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Abstract. We consider a non-self adjoint operator of the form −h2∆ + i(V (x) + α(x)y)
on the upper half plane y > 0 with Dirichlet boundary conditions on {y = 0} with V ⩾ 0, V
admitting a non-degenerate minimum at x = 0 and α′(0) = 0. We study its eigenfunctions
associated to the smallest eigenvalues in magnitude in the semiclassical limit h → 0. El-
ementary variational estimates show that these eigenfunctions are localized near the point
(0, 0) at the scales O(h1/3) in x and O(h2/3) in y. In this paper, we show that the O(h1/3)
localization in x is not optimal; more precisely, we establish that the eigenfunctions are
concentrated in a neighborhood of size O(h1/2) of the axis {x = 0}, and this scale is shown
to be sharp. The proof relies on the symbolic calculus of operator-valued pseudodifferential
operators.

1. Motivations and questions

1.1. Main motivation. The main motivation for this paper is the study of the “low-energy
eigenfunctions” (i.e., associated to smallest eigenvalues in magnitude) of the Bloch-Torrey
operator

Bh := −h2∆+ ix1

defined on an appropriate subspace of L2(Ω), where Ω ⊂ R2 is a smooth, bounded domain,
with suitable boundary conditions, in the semiclassical limit h → 0. More precisely, we
are interested in analyzing the localization phenomenon that takes place at the point of ∂Ω
where x1 is minimal; this phenomenon is illustrated by the numerical experiments displayed
in Figure 1 in the case of Dirichlet boundary conditions. Our goal is to tackle the following
question:

Q1: How are the low-energy eigenfunctions of the Bloch-Torrey operator localized?

In this work, we start addressing this question by considering a model operator on a half-
plane, obtained by local flattening near the point of minimal x1-coordinate, and we hope to
address Q1 in its full generality in a subsequent work.

1.2. Physical background. In their simplest form – in dimensionless units, without relax-
ation and with isotropic diffusion – the Bloch-Torrey equations read

dM

dt
(x, t) = −igzM +∆M

where M is the transverse magnetization of spin-bearing particles in a domain Ω, subject to
a magnetic field with constant gradient g in the z direction.
These equations were derived in 1956 by Torrey [29] from the Bloch equations [6] to take

into account diffusion effects due to inhomogenous magnetic fields. They are used to describe
the magnetization diffusion of nuclei in a confined domain, and are the main model for the
imaging technique known as diffusion MRI, or dMRI (a variant of MRI, since the latter makes
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Figure 1. Plot of the magnitude of the L2 normalized first eigenfunction
of the Bloch-Torrey operator −(2−n)2∆+ ix1 with Dirichlet boundary condi-
tions on the two-dimensional domain Ω bounded by the curve parametrized by
r(θ) = cos(θ)3+sin(θ)3 in polar coordinates, for n = 7, 8, 9, 10 (from top-left to
bottom-right). The red intensity is proportional to the magnitude of the plot-
ted eigenfunction. Numerical computations were performed using the finite
element method with a refined mesh near the point of the boundary where the
eigenfunction is localized. The L2 norm of the eigenfunction is indeed small
outside of a box of size O(h1/2) along the y-axis direction and O(h2/3) along
the x-axis, where h = 2−n. The source code for these computations is available
at [30].

uses of constant magnetic fields), which is used for medical imaging, especially applied to
brain cells (see, e.g., [22]). The spectrum of the operator

−∆+ igz ,

(usually considered with Neumann or Robin conditions) describes the relationship between
a measurable signal, obtained by spatially integrating the transverse magnetization data
over a region called “voxel”, and the microstructure of the imaged tissue see e.g. [14]. The
case of a large gradient g ≫ 1 (which is equivalent to the semiclassical regime with h →
g−1/2), or “localization regime”, was considered in a seminal paper [27], see also [12, 13, 24].
Localization effects (such as the ones visible in Figure 1) are connected to the phenomenon
of “diffusive edge enhancement”, in which boundaries of confining cells appear brighter on
reconstructed images, see [9, Section V]. As of yet, this localization regime is “yet poorly
understood and exploiting its potential advantages is still challenging in experiments” [24,
Section 5], see also [13] for related discussions.

We also note that the Bloch-Torrey operator appears in other physical applications, such as
superconductivity. For instance, the linearized time-dependent Ginzburg-Landau equations
near the “normal state”, under the assumption of vanishing magnetic field, lead to a model
close to the Bloch-Torrey equations, see, e.g. [2, Section 2.2].

1.3. Known results. The mathematical investigation of the spectrum of the Bloch-Torrey
operator was started by Almog in [2] in the context of superconductivity. This work was
followed by several others, (e.g. [18, 4, 3, 15]) which, together, show in various geometric
settings and choices of boundary conditions, that the “left-margin” of the spectrum σ(Bh)
satisfies

lim
h→0

Re (σ(Bh)) =
|z1|
2
h2/3

2



where z1 ≈ −2.33811 is the rightmost real zero of the Airy function. In particular, an upper
bound on this quantity is obtained in [4] by showing that (under adequate non-degeneracy
assumptions on the boundary) in the case of Dirichlet boundary conditions, there exists an
eigenvalue λ(h) of Bh satisfying

λ(h) = i
(
inf
Ω
x1

)
+ eiπ/3|z1|h2/3 +Kh+ o(h),

where K is a constant related to the curvature of the boundary of Ω at the point of minimal
abscissa (this is a particular case of [4, Theorem 1.1] choosing V = x1). The work [15]
furthermore constructs “quasimodes”, with associated “quasi-eigenvalues” close to λ(h) –

i.e., approximate solutions (λ̃(h), ũ(h)) of the eigenvalue problem(
Bh − λ̃(h)

)
ũ(h) = 0 ,

with λ̃(h) ≈ λ(h). Their ansatz ũ(h) possess a localization property which is similar to the
one visible in Figure 1. However, the fact that these quasimodes are actually close to true
eigenfunctions is not known.

Recently, analytic dilation techniques were used in [19] to obtain approximations of the
low-energy eigenvalues of the more general operator −h2∆ + eiαx1, α ∈ [0, 3π

5
). These ap-

proximations agree with [9, Equation (23)] when α = π
2
. The eigenfunctions of the resulting

operator after analytic dilation are localized in a way that is completely understood. Unfor-
tunately, dilating back to the original coordinates, the localization information is lost: only
the spectrum is preserved.

The above results and their proofs suggest that the natural localization for the eigen-
functions is O(h2/3) in the normal direction and O(h1/2) in the tangential direction. We
also highlight that these localization results are known for a self-adjoint counterpart of the
Bloch-Torrey operator (i.e., replacing ix1 by x1 in the definition of Bh), see [8]; however, as
far as we are aware, they have not been proven for the complex version. Moreover, while the
O(h2/3) localization in the normal direction can be obtained via fairly standard arguments
(see Remark 2.4 (iv)), obtaining the O(h1/2) scale in the tangential variable appears to re-
quire new techniques and seems to be the main difficulty for answering Q1. In this paper,
we prove this O(h1/2) localization for a model operator on the half-plane.

1.4. Model operator. As suggested by the above discussion, we should focus on the point
of ∂Ω where x1 is minimal, which we can assume to be located at (0, 0). Introducing a
normal parametrization γ : [0, 1] → R2 of ∂Ω, we can consider the system of coordinates

x(s, t) = γ(s) + tN(s) , (s, t) ∈ (−s0, s0)× (0, t0)

in a tubular neighborhood of (0, 0), where N(s) is the unit normal vector at γ(s) pointing
inside Ω (see Figure 2).

Discarding some curvature terms, we are led to considering the model operator

Th := −h2(∂2s + ∂2t ) + iα(s)t+ iV (s)

on the open set (s, t) ∈ R × R+, where α(s) and V (s) coincide with N(s) · e1 and V (s) :=
γ(s) · e1 respectively in a neighborhood of s = 0. In particular, assuming that the curvature
does not vanish at s = 0, the functions α and V can be chosen to satisfy the following
properties:

(i) α(0) = 1, α′(0) = 0 and α0 ⩽ α(s) ⩽ 1 for some α0 > 0.
3
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Figure 2. Local parametrization of the boundary ∂Ω near the point of min-
imal abscissa.

(ii) V (0) = V ′(0) = 0 and V ′′(0) > 0.

Through the change of variables t → h2/3y and s → x, this operator is unitarily equivalent
to

Lh = h2/3
(
D2

y + iα(x)y
)
+ h2D2

x + iV (x),

where here and in what follows we denote D = −i∂. Numerical experiments displayed in
Figures 3 and 4 suggest that the low-lying eigenfunctions of Lh concentrate near the half-
line {x = 0} as h → 0, and are approximately of the form ψh(x, y) ≈ fh(x)uAi(y) where
uAi(y) is a “ground-state” of the one-dimensional, complex Airy operator D2

y + iα(0)y with
Dirichlet conditions on the half-line (one such eigenfunction is explicitly given by uAi(y) =
Ai(ei

π
6α(0)1/3y + z1)), and where fh is localized at the scale O(h1/2). The goal of this paper

is to describe this localization in the x-variable i.e., answer the question

Q2: At what scale are the low-lying eigenfunctions of Lh localized in the x-variable ?

We expect that the answer to Q2 is the key difficulty in answering Q1. More precisely, the
ellipticity of Lh (see Proposition 3.2 below) should be the main ingredient for obtaining the
tangential localization in the original problem.

2. About the main result and its proof

Let us now describe our main result and the strategy of its proof.

2.1. Statement of the main result. Let V, α : R → R be smooth, bounded functions.
For h > 0, let

Lh : L2(R× R+) → L2(R× R+)

be the (unbounded) linear operator defined by

Lh := h2/3(D2
y + iα(x)y) + (hDx)

2 + iV (x)

on the domain

(2.1) H2 :=
{
ψ ∈ H2(R× R+) ∩H1

0 (R× R+) | yψ ∈ L2(R× R+)
}
.

We introduce the following additional assumptions on V and α.

Assumption 2.1 (Assumptions on V ). The function V satisfies the following properties

(i) V is smooth and bounded as well as all of its derivatives.
4



Figure 3. Plot of the magnitude of the L2 normalized first eigenfunction
of the operator Lh with V = x2 and α = 1 − 0.1x2, truncated to a square
domain [−R,R] × [0, 2R] (R = 4) with Dirichlet boundary conditions on the
boundary, and for h = 2−n with n = 4, 6, 8, 10 (from top-left to bottom-right).
The red intensity is proportional to the magnitude of the plotted eigenfunction.
Numerical computations were performed using the finite element method with
a refined mesh near near the axis {x = 0}. The L2 norm of the eigenfunction
is small outside a box of size O(h1/2) along the x-direction and O(1) along the
y-direction. The source code for these computations is available at [30].

Figure 4. Graph of the magnitude of the eigenfunction computed numer-
ically as in Figure 3 for n = 10 (left) and graph of the function x 7→
|Ai(xeiπ6 + z1)| (right).

(ii) V (x) ⩾ 0 for all x ∈ R and V (x) vanishes only for x = 0. This minimum is
furthermore non-degenerate, i.e. V ′′(0) > 0.

(iii) V is bounded below at infinity, i.e., V∞ := lim inf
|x|→∞

V (x) > 0.

Assumption 2.2 (Assumptions on α). The function α satisfies the following properties

(i) α is smooth and bounded as well as all of its derivatives, and satisfies α ⩾ α0 for
some α0 > 0.

(ii) α′(0) = 0,
(iii) It holds that

(2.2) (inf α)
2
3 |z2| − (supα)

2
3 |z1| > 0

where z1 ≈ −2.33811 and z2 ≈ −4.08795 are the the rightmost real zeros of the Airy
function.

For each x ∈ R, we denote by λ1,α(x) the “first” eigenvalue (i.e., smallest in magnitude)
of the complex Airy operator D2

y + iα(x)u on the half line with Dirichlet conditions, which
is given by

(2.3) λ1,α(x) := α(x)2/3|z1|ei
π
3 .
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Our main result below is an Agmon estimate (after S. Agmon, see [1]) describing the localiza-

tion in the x-variable of the eigenfunctions associated to the eigenvalues in D(λ1,α(0)h
2
3 , Rh)

in terms of the following Agmon distance

(2.4) ϕµ(x) :=
1− µ√

2

∣∣∣∣∫ x

0

√
V (s) ds

∣∣∣∣
where µ ∈ (0, 1).

Theorem 2.3. Let V and α satisfy Assumptions 2.1 and 2.2, let R > 0, µ ∈ (0, 1) and let
ϕµ be defined by (2.4). There exist C, h0 > 0 such that the estimate

(2.5) ∥eϕµ/hψ∥L2(R×R+) ⩽ C∥ψ∥L2(R×R+)

holds for all h ∈ (0, h0), λ ∈ D
(
λ1,α(0)h

2
3 , Rh

)
and all ψ ∈ H2 satisfying (Lh − λ)ψ = 0.

Remark 2.4.

(i) Under Assumption 2.1, ϕµ(x) ∼ 1−µ
2

√
V ′′(0)x2 as x → 0. Thus, roughly speaking, Theo-

rem 2.3 states that the eigenfunctions are exponentially localized in a O(h1/2)-neighborhood
of the (half) y-axis.

(ii) Theorem 2.3 is sharp, in the sense that the result does not hold if we allow µ = 0 (in
particular, under the same assumptions, one cannot prove a localization at a scale O(h1/2−ε)
for any ε > 0). This is shown in Section 5.

(iii) The condition (iii) in Assumption 2.2 is merely included to make the proof simpler, but
Theorem 2.3 holds without it. The reason is explained in the sketch of the proof in Section
2.3, see Remark 2.5.

(iv) It is possible to obtain a localization at scaleO(h1/3), by using simple variational arguments.
The reason why this approach does not obtain the optimal O(h1/2) scale is related to a
“pollution effect” caused by the numerical range of the complex Airy operator. We explain
this in more details in Appendix D.

(v) The results of this paper can be used to show the existence of an eigenvalue of Lh in

the disk D(λ1,α(0)h
2
3 , Rh) for R > 0 large enough – in particular, Theorem 2.3 has non-

empty assumptions. This is shown in Appendix C. The analog of this result is known
for Bloch-Torrey operators on bounded domains, and we thus recover it in our setting
by a new method. It can even be shown using analytic dilation arguments that the disk
D(λ1,α(0)h

2
3 , Rh) in fact contains the eigenvalue of Lh that is smallest in magnitude, but

we do not prove this here for the sake of conciseness.
(vi) Although Theorem 2.3 is stated for Dirichlet boundary conditions, it is not difficult to check

that the proof in this paper extends to Neumann or Robin condition: the main difference
is that the zeros of the Airy function must be replaced by the zeros of its derivative
(for Neumann conditions) or of a generic linear combination of the Airy function and its
derivative (for Robin boundary conditions).

(vii) Our proof relies on a one-dimensional Agmon estimate in the range of a projection operator
related to the first Airy eigenfunction, and an operator-valued semiclassical pseudodiffer-
ential argument in the complement of this space, which seems to be new in this context.
We explain this in the next section.
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2.2. Sketch of the proof. We start by reducing the proof to an elliptic estimate for an
exponential conjugation of the operator, namely,

(2.6) ∥u∥ ≲ h−1∥(L Φ
h − λ)u∥+ ∥1{|x|≲h1/2}u∥

for all u ∈ H2 and λ ∈ D(λ1,α(0)h
2/3, Rh), where Φ(x) is a suitable weight function and

L Φ
h := eΦ/hLhe

−Φ/h (see Proposition 3.2 below). Indeed, choosing u = eΦ/hψ, the first term
in the right-hand side vanishes, and the Agmon estimate follows by using that eΦ/h is h-
independently bounded on the set {|x| ≲ h1/2}. To simplify the explanation, we now sketch
our method to obtain (2.6) in the particular case where Φ = 0; the general case only involves
minor modifications, mainly due to the fact that L Φ

h and Lh differ only by an operator of
order one.

The key idea is to regard the complex Schrödinger part h2D2
x + iV (x) as a perturbation

of the eigenvalue λ, thus viewing Lh − λ as

Lh − λ = h2/3Aα − λ̃(x, hDx) ,

where Aα = D2
y + iα(x)y and λ̃(x, ξ) := λ − (ξ2 + iV (x)). This suggests that, roughly

speaking, a bound on (Lh − λ)−1 could be obtained from an estimate of the “operator-

valued resolvent” (h2/3Aα − λ̃)−1. One way to formalize this idea is to use the concept of
pseudodifferential operators with operator-valued symbols (the main results needed here are
recapped in §4.1). Namely, we rewrite

Lh − λ = Oph(h
2/3Aα(x)− λ̃(x, ξ))

where for each x ∈ R, Aα(x) := D2
y+ iα(x)y is a one-dimensional differential operator acting

on a subspace of L2(R+) with Dirichlet boundary conditions at y = 0. The quantization Oph

works analogously to a semiclassical quantization on scalar symbols. The operator Aα(x) is
well-understood: its spectrum consists of the simple eigenvalues given by

λn,α(x) = α(x)2/3|zn|ei
π
3 ,

where zn is the n-th real zero of the Airy function. This leads to the following natural
question: does the region

U :=
{
h−2/3λ̃(x, ξ)

∣∣ h > 0 , λ ∈ D(λ1,α(0)h
2
3 , Rh) , (x, ξ) ∈ R2

}
⊂ C

contain any poles of (Aα(x) − z)−1? The answer is that, since ξ2 ⩾ 0 and V (x) ⩾ 0, the
perturbation −(ξ2+ iV ) “pushes” the eigenvalue λ towards the “south-west” of the complex
plane. In particular, U is contained in a diagonal half-plane P as represented in Figure 5.
Assuming that for all x ∈ Rd, λ2,α(x) remains sufficiently larger than λ1,α(0) for all x,
the only possible pole of (h2/3Aα(x) − z)−1 in U is λ1,α(x)h

2/3. The previous condition is
guaranteed for h small enough provided that

(inf α)2/3|z2| > (supα)2/3|z1|,
i.e., if α satisfies the condition (iii) in Assumption 2.2.
To capture the influence of the pole λ1,α(x), it is useful to introduce the spectral projection

π1,α(x) onto to the one-dimensional eigenspace associated to λ1,α(x). The point is that

h2/3Aα(x)− λ̃(x, ξ) can be boundedly inverted on the range of Id−π1,α(x), and the inverse
r(x, ξ) is itself a sufficiently well-behaved symbol (see Proposition 4.13). The quantization
of this inverse will give a first-order parametrix for L Φ

h − λ. Indeed, using a composition
7



C

arg(z) = π/3
P

D(λ1,α(0), Rh
1/3)

+λ2,α(x)

+
λ1,α(x)

Figure 5. Poles of the resolvent (Aα(x) − z)−1 (red), a region P ⊂ C (blue

hatched half plane) enclosing the set U of the values taken by h−2/3λ̃(x, ξ) for
(x, ξ) ∈ R2 and λ ∈ D(λ1,α(0)h

2/3, Rh)

theorem for pseudodifferential operators with operator-valued symbols (Theorem 4.8 below),
we obtain

Oph(r(x, ξ))Oph(h
2/3Aα(x)− λ̃(x, ξ)) = Id−Oph(π1,α) + remainders,

In other words, writing R := Oph(r(x, ξ)) and Π1,α := Oph(π1,α), we have

R(Lh − λ) = Id−Π1,α + remainders.

(see (4.31) below). We then use the Calderón-Vaillancourt theorem (Theorem 4.7 below) to
show that ∥R∥ ≲ h−2/3 as well as to control the remainder terms. This leads to the estimate

(2.7) ∥(Id−Π1,α)u∥ ≲ h−2/3∥(Lh − λ)u∥+ h1/3∥u∥,
(see Proposition 3.10).

Remark 2.5 (Removing the assumption on α). To avoid using the condition (iii) in As-
sumption 2.2, one should instead invert the symbol of Lh − λ in the range of Id−π1,α(x)−
. . . − πn,α(x), where πi,α(x) is the spectral projection on to the eigenspace associated to
λi,α(x), and where n is large enough so that (inf α)2/3|zn+1| > (supα)2/3|z1|.

To complete the proof of the estimate (2.6), it remains to estimate the contribution of
Π1,αu. For this, we notice that

(Lh − λ)Π1,α =
(
λ1,α(x)h

2/3 + (hDx)
2 + iV − λ

)
Π1,α;

that is, on the range of Π1,α, the operator Aα is just the pointwise multiplication by λ1,α(x).
This effectively removes the pollution problem alluded to in Remark 2.4 (iv), allowing to
show the estimate

(2.8) ∥Π1,αu∥ ≲ h−1∥(Lh − λ)Π1,αu∥+ ∥1{|x|≲h1/2}Π1,αu∥
8



via simple variational arguments for a one-dimensional complex Schrödinger operator (see
Proposition 3.9). The estimate (2.6) is finally obtained by summing (2.8), (2.7), combined
with an estimate of the commutator [Lh,Π1,α] (Corollary 3.8).

2.3. Organization of the paper. The remainder of this article is organized as follows. Sec-
tion 3 reduces the proof of Theorem 2.3 to an elliptic estimate (Proposition 3.2), which, after
introducing a projection operator Π1,α, is further split into two key estimates, respectively
on the range of Π1,α and (Id−Π1,α). The first one follows immediately from the properties of
Π1,α and is presented in §3.3. Moreover, the (short) proof that Theorem 2.3 follows from the
main elliptic estimate can be found in §3.1. Section 4 – the bulk of the paper – is devoted
to the second and more subtle key estimate on the range of Id−Π1,α. Finally, in Section 5,
we establish the sharpness of Theorem 2.3.

We also include several appendices. Appendix A proves a density result used in the proofs
of Section 3. Appendix B gathers elliptic regularity estimates for the operators involved in
the paper. Appendix C shows that our method gives the existence of an eigenvalue of Lh

in the disk appearing in the assumption of Theorem 2.3. Finally, Appendix D discusses the
“pollution” by the Airy operator mentioned in Remark 2.4 (iv).

2.4. Notation. Here we gather some of the notation used throughout this article. Let
C∞

c (Rd) denote the space of infinitely differentiable functions in Rd with compact support,
and S (Rd) the Schwartz space. For a closed subset F ⊂ Rd, S (F ) denotes the set of
restrictions to F of elements of S (Rd). For n ∈ N and X ∈ Rn, let

⟨X⟩ := (1 + |X|2)1/2.

Let D = 1
i
∂ (i.e., Dxi

= 1
i

∂
∂xi

and similarly for Dξi and so on). We denote by ∥ · ∥∞ the

supremum norm on Rd.
We write L (E,F ) for the space of bounded linear maps between the normed spaces E

and F with the norm

∥A∥L (E,F ) := sup
x∈E\{0}

∥Ax∥F
∥x∥E

.

When E = F (with equal norms), we put L (E) := L (E,E) and let ∥ · ∥L (E) denote the
corresponding norm. As usual, the adjoint of a (possibly unbounded) operator A is denoted
by A∗, and the transpose AT is the operator defined on dom(A∗) by

ATu := A∗u.

Given two operators A,B, we denote by [A,B] = AB − BA their commutator, whenever
it makes sense. Given a Hilbert space H and an (unbounded) linear map A : H → H,
we denote by σ(A) ⊂ C the spectrum of A and by ρ(A) ⊂ C its resolvent set. We denote
by D(z0, r) the open disk centered at z0 ∈ C and with radius r > 0, and by C (z0, r) its
boundary, with the counter-clockwise orientation when used in contour integrals.

Let H := L2(R × R+). We denote by ∥ · ∥R×R+ and ⟨·, ·⟩R×R+ its usual norm and inner
product, and we will often drop the R×R+ subscript when it will not lead to confusion. Let
H2 be as in (2.1) with the norm

∥ψ∥2H2 := ∥ψ∥2 + ∥∆ψ∥2 + ∥yψ∥2.
9



We also consider the space

D =
{
f ∈ H2(R+) ∩H1

0 (R+) | yf ∈ L2(R)
}
,

endowed with the norm
∥f∥2D := ∥f∥2R+

+ ∥A f∥2R+
,

where A := D2
y + iy and ∥ · ∥R+ denotes the L2 norm on R+. We denote by Aα the operator

defined on H2 by

(2.9) Aα := D2
y + iα(x)y

(i.e., Aα acts on functions of the variables x and y) and for each x ∈ R, we write Aα(x) for
the operator defined by the same formula but acting on D (i.e., for each x, Aα(x) acts on
functions of the variable y).

Let Ai be the standard Airy function which can be defined for x ∈ R by the semi-convergent
integral

Ai(x) =
1

π

∫ ∞

0

cos

(
t3

3
+ xt

)
dt ,

and let 0 > z1 > z2 > . . . be the sequence of its zeros (z1 ≈ −2.33811, z2 ≈ −4.08795,
z3 ≈ −5.52056, etc.). For every x ∈ R and n ∈ N, we write

(2.10) λn,α(x) := α(x)2/3|zn|ei
π
3 .

To lighten the proofs, we will often denote by C any generic positive constant whose value
can be bounded independently of the universally quantified variables in the statement.

3. Reduction to elliptic estimates

3.1. Elliptic estimate for a conjugate operator. In this section, we reduce the proof of
Theorem 2.3 to a global elliptic estimate (Proposition 3.2 below) for a conjugate operator of
the form

(3.1) L Φ
h := eΦ/hLhe

−Φ/h = h2/3Aα + (hDx + iΦ′)2 + iV.

Considering the leading order in h, one can guess that the eikonal equation ϕ(x)′2 = iV (x)
should play a role. Namely, here we consider weights Φ in (3.1) that are controlled by the
real part of the eikonal solution ϕ in the following sense.

Definition 3.1 (µ-subsolution). Let µ ∈ (0, 1) and let Φ : R → R+ be an infinitely differ-
entiable function which is bounded as well as all of its derivatives.

We say that Φ is a µ-subsolution if it satisfies

V − 2Φ′2 ⩾ µV.

Proposition 3.2 (Main elliptic estimate). For any R > 0 and µ ∈ (0, 1), there exists
C(R, µ) > 0, h0 > 0, L > 0 and N > 0 such that the inequality

∥u∥ ⩽ C(R, µ)max
n⩽N

∥∂nxΦ′∥∞
(
h−1∥(L Φ

h − λ)u∥+ ∥1{|x|⩽Lh1/2}u∥
)

holds for any h ∈ (0, h0), λ ∈ D(λ1,α(0)h
2
3 , Rh), u ∈ H2 and for any µ-subsolution Φ.

This result is obtained as a direct consequence of Propositions 3.9 and 3.10 below. We
now show that Theorem 2.3 follows from Proposition 3.2.
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Proof of Theorem 2.3 using Proposition 3.2. ForA ⩾ 1, consider ΦA(x) :=
1−µ√

2

∣∣∣∫ x

0

√
VA(s) ds

∣∣∣
with VA = V χA, where χA = χ(x/A) where χ ⩾ 0, suppχ ⊂ [−1, 1] and χ ≡ 1 near 0. Then
ΦA is a µ-subsolution. Moreover, ΦA ⩽ ϕµ and the derivatives of Φ′

A are uniformly bounded
(in terms of V , χ, and A); hence by Proposition 3.2 applied to u := eΦA/hψ,

∥eΦA/hψ∥ ⩽ C(R, h0)∥1{|x|⩽Lh1/2}e
ΦA/hψ∥ ⩽ C(R, h0)∥1{|x|⩽Lh1/2}e

ϕµ/hψ∥
where, importantly, C(R, h0) is independent of A. Using the Fatou lemma, we conclude that

∥eϕµ/hψ∥ = lim inf
A→∞

∥eΦA/hψ∥ ⩽ C(R, h0)∥1{|x|⩽Lh1/2}e
ϕµ/hψ∥.

The result follows using that 1{|x|⩽Lh1/2}ϕµ can be bounded independently of h, since ϕµ

behaves quadratically near x = 0. □

3.2. The projection Π1,α and its properties. Proposition 3.2 will be proved separately
on the range and the kernel of projection operator Π1,α. We now define this operator and
establish some of its properties. Let A be the complex Airy operator on the half-line, i.e.,
the unbounded linear operator defined by

A := D2
y + iy

densely defined on the domain

(3.2) D := {f ∈ H2(R+) ∩H1
0 (R+) : yf ∈ L2(R+)}.

This operator has been studied in [16, 26]. Its adjoint A ∗ is the unbounded linear operator
defined by A ∗ = D2

y − iy with domain D; thus,

(3.3) A T = A .

For any x ∈ R, let Aα(x) : D → L2(R+) be defined by

(3.4) Aα(x) := D2
y + iα(x)y.

Observe that

(3.5) ∀x ∈ R , Aα(x) = α(x)2/3Uα(x)A Uα(x)
∗

where Uα(x) : L
2(R+) → L2(R+) is the unitary operator

(3.6) (Uα(x)f)(y) = α(x)1/6f(α(x)1/3y).

It is well-known that A is closed (see, e.g., [26, Proposition 3]), and thus, so is Aα(x) for
each x. In what follows, we equip D with the graph norm

(3.7) ∥f∥2D := ∥f∥2R+
+ ∥A f∥2R+

.

The operator A has compact resolvent and its spectrum is given by

σ(A ) =
{
|zn|ei

π
3 | n = 1, 2, . . .

}
where 0 > z1 > z2 > . . . is the sequence of the real zeros of the Airy function. Let π1 :
L2(R+) → L2(R+) be the Riesz projector

(3.8) π1 :=
1

2πi

∫
C (|z1|ei

π
3 ,r)

(z − A )−1 dz

where r < |z2| − |z1|.
11



Proposition 3.3. There exists u1 ∈ D satisfying A u1 = |z1|ei
π
3 u1 and ⟨u1, u1⟩L2(R+) = 1

(where ⟨·, ·⟩R+ denotes the standard inner product of L2(R+)). Moreover,

π1f = ⟨f, u1⟩R+u1 for all f ∈ L2(R+).
Proof.

1. We first observe that for z ∈ γ, since A is closed and densely defined, ((z − A )−1)∗ =
(z − A ∗)−1, thus

π∗
1 =

1

2πi

∫
γ′
(z − A ∗)−1 dz

where γ′ is a circle centered at |z1|e−iπ/3 and with radius r < |z2| − |z1|.
2. Let u1 be an eigenvector of A associated to |z1|ei

π
3 . Observe that A ∗u1 = A u1 =

|z1|e−iπ/3u1. Since the eigenvalues of A and A ∗ are algebraically simple, it follows (see,
e.g., [7, Proposition 3.35]) that Ran(π1) = Span({u1}) and Ran(π∗

1) = Span({u1}). Thus
there exist v, w ∈ L2(R+) such that for all f ∈ L2(R+),

π1f = ⟨f, v⟩R+u1 , π∗
1f = ⟨f, w⟩R+u1.

In particular, Ker(π1) = {v}⊥ and Ran(π∗
1) = Span({u1}). Since Ker(π1) = Ran(π∗

1)
⊥, it

follows that v = cu1 for some c ∈ C.
3. Since π1u1 = u1, we deduce from step 2 that

⟨u1, cu1⟩R+ = 1;

in particular, c ̸= 0 and ⟨u1, u1⟩R+ = 1
c
. Choosing c′ such that c′2 = c, it is easy to check

that the function ũ1 := c′u1 satisfies the requirements. □

In what follows, we fix u1 as in Proposition 3.3 and for all x ∈ R, we denote

(3.9) uα,x(y) := (Uα(x)u1)(y).

For all x ∈ R,
(3.10) ⟨uα,x, uα,x⟩R+ = ⟨Uα(x)

∗Uα(x)u1, u1⟩R+ = 1;

Since u1 ∈ S (R+), one can check that the map R ∋ x 7→ uα,x ∈ L2(R+) is infinitely
differentiable and satisfies

(3.11) ∀k ∈ N , ∃Ck > 0 : ∀x ∈ R , ∥Dk
xuα,x∥R+ ⩽ Ck.

Let jα : L2(R) → H be defined for f ∈ L2(R+) by

(jαf)(x, y) := f(x) · uα,x(y) for all (x, y) ∈ R× R+

and let jTα : H → L2(R) be its transpose, i.e.,

(3.12) ⟨jTαψ, f⟩R+ := ⟨ψ, (jαf)⟩R×R+ , (ψ, f) ∈ H × L2(R+).

By the Fubini theorem,

(3.13) (jTαψ)(x) = ⟨ψ(x, ·), uα,x⟩R+ .

Definition 3.4 (The operator Π1,α). We define Π1,α : H → H by

Π1,α := jα · jTα .

To avoid worrying about the pointwise evaluation of almost-everywhere defined functions,
it will be convenient to use the following density result. Its proof can be found in Appendix A.
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Lemma 3.5. The space

X := C∞
c (R× R+) ∩H2

is dense in H2. Here, C∞
c (R× R+) denotes the set of restrictions to R×R+ of functions in

C∞
c (R2).

Proposition 3.6 (Elementary properties of jα and Π1,α). The maps jα : L2(R) → H,
jTα : H → L2(R) and Π1,α : H → H are bounded and satisfy

(i) jTα · jα = IdL2(R) and Π1,α is a projection (i.e., Π2
1,α = Π1,α).

(ii) The embeddings jα(H
2(R)) ⊂ H2, jTα (H2) ⊂ H2(R) and (thus) Π1,α(H2) ⊂ H2, hold

and are continuous.
(iii) Π1,αF = FΠ1,α holds for any multiplication operator of the form (Fu)(x, y) :=

F (x)u(x, y).
(iv) Π1,αAα = AαΠ1,α = λ1,αΠ1,α as operators from H2 to L2(R+ × R), where λ1,α is the

multiplication operator (λ1,αu)(x, y) := λ1,α(x)u(x, y), with λ1,α(x) defined by (2.10).
Proof.

(i) From (3.10) and the Fubini theorem, we deduce that ⟨jαu, jαv⟩R×R+ = ⟨u, v⟩R, which
implies that jTα · jα = IdL2(R). Thus Π

2
1,α = (jα · jTα ) · (jα · jTα ) = jα · (jTα · jα) · jTα = Π1,α.

(ii) The continuous embedding jα(H
2(R)) follows from the definition of jα and the

property (3.11). On the other hand, for ψ ∈ X, the combination of (3.13) and
(3.11) and differentiation under the integral sign implies that jTαψ ∈ H2(R) with
∥jTαψ∥H2(R) ⩽ ∥ψ∥H2 , and the continuous embedding jTα (H2) ⊂ H2(R) follows by
density.

(iii) By definition of jα, it is immediate that jαF = Fjα (where F stands both for the
multiplication operator on L2(R) and on H). It follows by taking the transpose that
jTαF = FjTα , and thus Π1,αF = (jα · jTα )F = F (jα · jTα ) = FΠ1,α.

(iv) For any f ∈ H2(R),
Aα(jαf) = λ1,α(jαf)

by definition of jα and using that for all x ∈ R, (D2
y + α(x)iy)uα,x = λ1,α(x)uα,x. By

taking the transpose and using that A T
α = Aα, it follows that j

TAα = jTλ1,α. Thus
by (iii),

Π1,αAαf = jα · jTαAαf = jα · jTα (λ1,αf) = λ1,αjα · jTα f = λ1,αΠ1,αf.

This shows that Π1,αAα = λ1,αΠ1,α and by taking the transpose and using again (iii),
it follows that AαΠ1,α = λ1,αΠ1,α. □

Proposition 3.7 (Estimate of the commutators [D2
x,Π1,α]). There exists C > 0 such that

for all ψ ∈ H2,

∥[D2
x,Π1,α]ψ∥R×R+ ⩽ C∥Dxψ∥R×R+ .

Proof. For ψ ∈ C∞
c (R× R+) ∩H2, one can check that

Π1,αψ(x, y) = ⟨ψx, uα,x⟩R+uα,x.

In this case, the claimed inequality is then obtained by differentiating under the integral sign
and using (3.11). The result follows for any ψ ∈ H2 using the continuity of [D2

x,Π1,α] from
H2 to H (by property (ii) of Proposition 3.6) and density (Lemma 3.5). □
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Corollary 3.8. For all R > 0, µ ∈ (0, 1), and h0 > 0, there exists C > 0 such that the
estimate

∥[L Φ
h ,Π1,α]ψ∥R×R+ ⩽ Ch4/3∥ψ∥R×R+ + Ch2/3∥(L Φ

h − λ)ψ∥R×R+

holds for all h ∈ (0, h0), λ ∈ D(λ1,α(0)h
2/3, Rh), ψ ∈ H2 and Φ any µ-subsolution in the

sense of Definition 3.1.

Proof. By Proposition 3.6, [L Φ
h ,Π1,α] = h2[D2

x,Π1,α], and thus by Proposition 3.7,

∥[Lh,Π1,α]∥R×R+ ⩽ Ch∥(hDx)ψ∥R×R+ .

Using the basic elliptic estimate of Proposition B.1, we deduce that for any ε ∈ (0, 1),

∥[Lh,Π1,α]∥R×R+ ⩽ Cεh∥(L Φ
h − λ)ψ∥R×R+ + h

(
ελ+

1

ε

)
∥ψ∥R×R+ ,

and the conclusion follows by taking ε = h−1/3. □

3.3. The two key elliptic estimates. With the operator Π1,α at hand, we can now state
the two key elliptic estimates used to prove Proposition 3.2.

Proposition 3.9 (Elliptic estimate on Ran(Π1,α)). Let R > 0 and µ ∈ (0, 1). Then, there
exist h0 > 0, C(R, µ, h0) > 0, and L > 0 such that the inequality
(3.14)
∥Π1,αψ∥R×R+ ⩽ C(R, µ, h0)

(
h−1∥(L Φ

h − λ)ψ∥R×R+ + ∥1{|x|⩽Lh1/2}ψ∥R×R+ + h1/3∥ψ∥R×R+

)
holds for any h ∈ (0, h0), λ ∈ D(λ1,α(0)h

2
3 , Rh), u ∈ H2 and any µ-subsolution Φ.

Proof. By Proposition 3.6,

(L Φ
h − λ)Π1,α = ([(hDx + iΦ′)2 + Vh,eff ]− z)Π1,α

onH2, where Vh,eff = iV +h2/3(λ1,α(x)−λ1,α(0)) and z = λ−λ1,α(0)h
2
3 satisfies z ∈ D(0, Rh).

Denoting H Φ
eff := (hDx + iΦ′)2 + Vh,eff , we observe that for all f ∈ H2(R),

⟨(H Φ
eff − z)f, f⟩R = ∥(hDx)f∥2R + 2iRe

(〈
(hDx)f,Φ

′f
〉
R

)
+ ⟨(Vh,eff − Φ′2 − z)f, f⟩R

where ∥·∥R and ⟨·, ·⟩R stand for the norm and inner product of L2(R), respectively. Multiply-
ing by e−iπ

4 , taking the real part, using that 2Re (⟨(hDx)f,Φ
′f⟩R) ⩾ −∥(hDx)f∥2R − ∥Φ′f∥2R

and |z| ⩽ Rh, we deduce that

Re
[
e−iπ

4

〈
(H Φ

eff − z)f, f
〉
R

]
⩾ cos(π/4)

〈
(V − 2Φ′2 − Ch)f, f

〉
R + h2/3 cos(π/12)|z1|

〈(
α

2
3 − α(0)

2
3

)
f, f

〉
R

⩾ c
〈[
V + h

2
3 (α

2
3 − α(0)

2
3 )− Ch

]
f, f

〉
R

for some c > 0, since Φ is a µ-subsolution. We then write

V (x) + h
2
3 (α(x)

2
3 − α(0)

2
3 ) =

V (x)

2
+

[
V (x)

2
+ h2/3(α(x)2/3 − α(0)2/3)

]
,

and notice that, under Assumptions 2.1 and 2.2, for h small enough, the term between square
brackets in the right-hand side is non-negative for all x ∈ R. Therefore,

(3.15) Re
[
e−iπ

4

〈
(H Φ

eff − z)f, f
〉
R

]
⩾ ch∥f∥2R − Ch∥1{V ⩽Ch}f∥2R.
14



Given y > 0 and ψ ∈ C∞
c (R× R+) ∩ H2, we apply (3.15) to f = (Π1,αψ)(·, y) ∈ H2(R).

Integrating in y and using the Fubini theorem, we deduce that

∥Π1,αψ∥2R×R+
⩽ Ch−1Re

[
e−iπ

4

〈
(Lh − λ)Π1,αψ,Π1,αψ

〉
R×R+

]
+ C∥1{V ⩽Ch}Π1,αψ∥2R×R+

,

and the same follows for all ψ ∈ H2 by density (Lemma 3.5). Finally, using the Cauchy-
Schwarz inequality, the fact that Π1,α commutes with 1{V ⩽Ch} (by Proposition 3.6 (iii)),

∥Π1,αψ∥R×R+ ⩽ Ch−1∥(L Φ
h − λ)Π1,αψ∥R×R+ + C∥1{V ⩽Ch}ψ∥R×R+ ,

and the result follows by the commutator estimate of Corollary 3.8 and the fact that V (x) ∼
V ′′(0)

2
x2 for x close to 0. □

Proposition 3.10 (Elliptic estimate on Ran(Id−Π1,α)). Let R > 0 and µ > 0. There exists
C(R, µ) > 0, h0 > 0 and N > 0 such that the inequality

(3.16) ∥(Id−Π1,α)ψ∥R×R+ ⩽ C(R, µ)max
n⩽N

∥∂nxΦ′∥∞
(
h−

2
3∥(L Φ

h − λ)ψ∥R×R+ + h1/3∥ψ∥R×R+

)
holds for any h ∈ (0, h0), λ ∈ D(λ1,α(0)h

2
3 , Rh), ψ ∈ H2, and any µ-subsolution Φ.

The proof is the object of the next section. It is completed in §4.4.

4. Elliptic estimate on the range of Id−Π1,α

Recall the Riesz projector π1 and the unitary operator Uα(x) from §3.2. For x ∈ R, let

π1,α(x) := α(x)−2/3Uα(x)π1Uα(x)
∗ =

1

2πi

∫
γ

(α(x)z − Aα(x))
−1 dz.

Observe that by Proposition 3.3 and rescaling,

(4.1) π1,α(x)u = ⟨u, uα,x⟩R+uα,x

where uα,x is defined by (3.9).
Given η > 0, let

(4.2) aη := (1− η)|z2|eiπ/3,

(4.3) Gη :=
{
z ∈ C | Re

[(
(inf α)2/3aη − z

)
e−iπ

4

]
⩾ 0

}
;

observe that Gη is a translated and rotated half-plane, and that provided that the condition
(2.2) in Assumption 2.2 holds, Gη ∩ σ(Aα(x)) = {λ1,α(x)} for all x ∈ R and η small enough
(see the sketch of the proof in §2.3, especially Figure 5).

Proposition 4.1 (Resolvent estimate for Aα(x)). Suppose that α satisfies Assumption 2.2.
Then, for any η > 0, there exists Cη > 0 such that for all x ∈ R and z ∈ Gη \ {λ1,α(x)},

(4.4) ∥(Aα(x)− z)−1(Id−π1,α(x))∥L (L2(R+)) ⩽
Cη

1 + |z|
.

and

(4.5) ∥(Aα(x)− z)−1(Id−π1,α(x))∥L (L2(R+),D) ⩽ Cη.
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Introducing the set

Fη :=
{
z ∈ C | Re

[
e−iπ

4 (aη − z)
]
⩾ 0

}
,

Proposition 4.1 is a consequence of the following result and a scaling argument:

Proposition 4.2. For any η ∈ (0, 1), there exist C ′
η > 0 such that for all z ∈ Fη \ {z1ei

π
3 },

∥(A − z)−1(Id−π1)∥L (L2(R+)) ⩽
C ′

η

1 + |z|
,(4.6)

(4.7) ∥(A − z)−1(Id−π1)∥L (L2(R+),D) ⩽ C ′
η .

Proof of Proposition 4.1 from Proposition 4.2. The definitions of Fη and Gη imply that for
all x ∈ R,

z ∈ Gη \ {λ1,α(x)} =⇒ α(x)−2/3z ∈ Fη \ {|z1|eiπ/3}.

Thus, given z ∈ Gη \ {λ1,α(x)} and letting ζ := α(x)−
2
3 z, Proposition 4.2 ensures that

∥(A − ζ)−1(Id−π1)∥L (L2(R+)) ⩽ C ′
η,

and the L2 estimate (4.4) follows by writing (with Uα(x) defined by (3.6))

∥(Aα(x)− z)−1(Id−π1,α(x))∥L (L2(R+),D)

=
∥∥Uα(x)

(
α(x)

2
3A − α(x)

2
3 ζ
)−1

α(x)−
2
3 (Id−π1)Uα(x)

∗∥∥
L (L2(R+),D)

⩽ C∥(A − ζ)−1(Id−π1)∥L (L2(R+))

since α−1 is bounded (by Assumption 2.2) and Uα(x) is unitary. The estimate (4.5) is
obtained similarly from (4.7), using that Uα(x) maps D to itself continuously thanks to
Assumption 2.2. □

To prove Proposition 4.2, we start by the following lemma.

Lemma 4.3. For any θ0 > 0, there exists C > 0 such that the estimate

(4.8) ∥(A − z)−1∥L (L2(R+)) ⩽
C

|z|

holds for any complex number z ̸= 0 in the sector π
2
+ θ0 ⩽ arg(z) ⩽ 2π − θ0.

Proof. For all v ∈ D

(4.9) Re (e−iθ⟨(A − z)v, v⟩) = cos(θ)∥Dyv∥2 + sin(θ)∥√yv∥2 − Re(e−iθz)∥v∥2.

In particular, since θ ∈ [0, π
2
],

Re (e−iθ⟨(A − z)v, v⟩) ⩾ −Re (e−iθz)∥v∥2.

Applying this to v := (A − z)−1u, using the Cauchy-Schwarz inequality and assuming
Re (e−iθz) < 0, we deduce that

(4.10) ∥(A − z)−1∥L (L2(R+)) ⩽
1

|Re(e−iθz)|
,
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Next, let f : [π/2 + θ0, 2π − θ0] → [0, π
2
] be such that cos(φ − f(φ)) < 0 for all φ ∈

[π/2 + θ0, 2π − θ0]. For example, one can take

f(φ) =


0 if φ ∈ [π/2 + θ, π]

π/4 if φ ∈ [π, 3π/2)

π/2 if φ ∈ [3π/2, 2π − θ0].

Then

M := min
φ∈[π/2+θ0,2π−θ0]

1

| cos(φ− f(φ))|
> 0.

For z = |z|eiφ with φ ∈ [π/2 + θ0, 2π − θ0], we can apply (4.10) with θ := f(φ) to obtain

∥(A − z)−1∥L (L2(R+)) ⩽
M

|z|
,

concluding the proof. □

Proof of Proposition 4.2. For z ∈ Fη \ {|z1|eiπ/3}, let
F (z) := ∥(A − z)−1(Id−π1)∥L (L2(R+)).

Given θ0 ∈ (0, π
4
), Lemma 4.3 ensures that there exists Cθ0 > 0 such that

F (z) ⩽
Cθ0

|z|
for all z ̸= 0 in the sector S(θ0) :=

{
z ∈ C | π

2
+ θ0 < arg(z) < 2π − θ0

}
. This implies that

for all z ∈ Ω := S(θ0) \D(0, 1),

F (z) ⩽
2Cθ0

1 + |z|
.

Therefore, it remains to show that there exists C > 0 such that

sup
z∈K\{|z1|eiπ/3}

(1 + |z|)F (z) < +∞

where K := Fη \ Ω is a compact set (see Figure 6). To this end, for δ > 0 small enough, we
write

K = D(|z1|eiπ/3, δ) ∪ (K \D(|z1|eiπ/3, δ)).
It is immediate that (1 + |z|)F (z) is bounded on K \D(|z1|eiπ/3, δ) since this is a compact
subset of ρ(A ). Finally, for z ∈ D(|z1|ei

π
3 , δ) \ {|z1|ei

π
3 }, we write

(A − z)−1(Id−Π1) =
−1

2πi

∫
C (|z1|ei

π
3 ,2δ)

(ζ − z)−1(ζ − A )−1 dζ.

Thus,

∥(A − z)−1(Id−Π1)∥ ⩽
1

2π

∫
C (|z1|ei

π
3 ,2δ)

δ−1∥(ζ − A )−1∥dζ

⩽ 2 max
ζ∈C (|z1|ei

π
3 ,2δ)

∥(ζ − A )−1∥ <∞

since C (|z1|ei
π
3 , 2δ) is again a compact subset of ρ(A ). This implies that (1 + |z|)F (z) is

also bounded on D(|z1|ei
π
3 , δ) \ {|z1|eiπ/3}, completing the proof of the L2 estimate (4.6).
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In turn, the estimate (4.7) in the D norm follows from the L2 estimate (4.6) since

∥(A − z)−1(Id−π1)u∥D = ∥(A − z)−1(Id−π1)u∥L2(R+) + ∥A (A − z)−1(Id−π1)u∥L2(R+)

⩽ (1 + |z|)∥(A − z)−1(Id−π1)u∥L2(R+) + ∥u∥L2(R+). □

+
|z1|ei

π
3

+
|z2|ei

π
3

Fη

Ω

arg(z) = π
2
+ θ0

arg(z) = 2π − θ0

+aη

K

Figure 6. The regions of the complex plane involved in the proof of Propo-
sition 4.2. The region Fη is the half-plane lying to the south-west of the blue
dashed line. The subset of Fη which lies to the left and bottom of the solid
purple line is the one denoted by Ω in this proof, and the orange shaded area
is the compact set denoted by K.

4.1. Recap of semiclassical pseudodifferential operators with operator-valued sym-
bols. This paragraph uses the results about semiclassical pseudodifferential calculus with
operator-valued symbols from [20, Chapter 2], [21] (in french), see also [11, Appendix B].
For the reader’s convenience, we recall here the material needed for our purposes. The idea
is to consider a family of operators p(x, ξ) (considered as symbols), indexed by the variable
(x, ξ) ∈ R2d, and to construct an operator P = Opw

h (p) by a Weyl quantisation analogous to
the one used with scalar-valued symbols.

Definition 4.4 (Ordered family of Hilbert spaces, [20, Definition 2.1.1]). A family (HX)X∈R2d

of Hilbert spaces is an ordered family of Hilbert spaces if it satisfies the following properties:

(1) For all X ∈ R2d, HX = H := H(0,0).
(2) There exists C,N > 0 such that for all X, Y ∈ R2d, a ∈ A,

∥a∥HX
⩽ C⟨X − Y ⟩N∥a∥HY

.

Definition 4.5 (Symbol class Sδ(HX ,JX), [20, Definition 2.1.2]). Let (HX)X∈R2d , (JX)∈R2d

be ordered families of Hilbert spaces. For δ ∈ [0, 1
2
), the symbol class Sδ(HX ,JX) is the set

of families (ph)h∈(0,h0) of elements of C∞(R2d,L (H ,J )) such that for all β ∈ N2d, there
exists Cβ > 0 such that

∀h ∈ (0, h0) , ∀X ∈ R2d , ∥∂βph(X)∥L (HX ,JX) ⩽ Cαh
−δ|β|.
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In what follows, we denote

|(ph)h∈(0,h0)|Sδ(HX ,JX),β := sup
h∈(0,h0)

sup
X∈R2d

hδ|β|∥∂βph(X)∥L (HX ,JX),

or simply |ph|δ,β for short, when this will not lead to confusion.

Definition 4.6 (Weyl quantization of operator-valued symbols, [20, Definition 2.1.7]). Let
HX ,JX be two ordered families of Hilbert spaces, let δ ∈ [0, 1

2
) and let (ph)h∈(0,h0) ∈

Sδ(HX ,JX). Then the Weyl quantization Opw
h (ph) of (ph)h∈(0,h0) is defined by

(4.11)
(
Opw

h (ph)u
)
(x) :=

1

(2πh)d

∫∫
R2d

e
i
h
(x−y)·ξph

(
x+y
2
, ξ
)
u(y) dydξ , x ∈ Rd

for u ∈ S (Rd,H ), where the integral is defined as a Bochner integral.

Just as in the scalar case, direct manipulations of the definition show that for p(x, ξ) = p(x)
and q(x, ξ) = ξα with α ∈ Nd,

(4.12) (Opw
h (p)u)(x) = p(x)u(x) , Opw

h (q)u = h|α|Dα
ξ u.

We will use the following two main results which are analogous to the ones for semiclassical
pseudodifferential operators with scalar-valued symbols:

Theorem 4.7 (Calderón-Vaillancourt [20, Theorem 2.1.16]). Suppose that for all X ∈ R2d,
HX ≡ H , JX ≡ J . Let δ ∈ [0, 1

2
), let (ph)h∈(0,h0) ∈ Sδ(H ,J ). Then, the Weyl

quantization Opw
h (ph) in (4.11) extends to a unique linear continuous operator

Opw
h (ph) : L

2(Rd,H ) → L2(Rd,J )

and there exists C > 0 and M > 0 such that for all h ∈ (0, h0)

∥Opw
h (ph)∥L (L2(Rd,H ),L2(Rd,J )) ⩽ C

∑
β⩽Md

h|β|/2 sup
X∈R2d

∥∂βph(X)∥L (H ,J )

Theorem 4.8 (Composition, [20, Theorem 2.1.12]). Let (HX)X∈R2d, (JX)X∈R2d, (MX)X∈R2d

be sorted families of Hilbert spaces, let δ ∈ [0, 1
2
) and let (ah)h∈(0,h0) ∈ Sδ(HX ,JX) and

(bh)h∈(0,h0) ∈ Sδ(JX ,MX). Then there exists a unique symbol family (ch)h∈(0,h0) ∈ Sδ(JX ,MX)
such that for all h ∈ (0, h0),

Opw
h (ah)Opw

h (bh) = Opw
h (ch).

For all h, we write

ah#bh := ch.

The map # : Sδ(HX ,JX)× Sδ(JX ,MX) → Sδ(HX ,MX) is continuous, in the sense that
for all β ∈ N2d, there exists Cβ,Mβ > 0 such that

|ah#bh|δ,β ⩽ Cβ sup
|β′|⩽Mβ

|ah|δ,β′ |bh|δ,β′

For any N ∈ N∗, ah#bh satisfies

ah#bh =
N∑
k=0

1

k!

(
ih

2

)k [
σ(DX , DY )

k(ah(X)bh(Y ))
] ∣∣

Y=X
+ h(N+1)(1−2δ)rN+1
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for some rN+1 ∈ Sδ(HX ,MX), where, writing X = (x, ξ) and Y = (y, η), and denoting by
Dx, Dξ, Dy, Dη the operators of differentiation corresponding to these variables,

σ(DX , DY )u(X, Y ) = (Dξ ·Dy −Dx ·Dη)u(X, Y ).

For our purposes, only the following particular case of the composition formula will be
required:

ah#bh = ahbh +
h

2i
{ah, bh}+ h2(1−2δ)r2 ,

where r2 ∈ Sδ(HX ,JX), and where {f, g} = ∂xf∂ξg − ∂ξf∂xg is the Poisson bracket of f
and g.

4.2. Construction of the approximate inverse. We now use the previous theory to con-
struct an approximate inverse of L Φ

h −λ by quantizing the inverse of its principal (operator-
valued) symbol.

In view of the expression of L Φ
h , its operator symbol is given by

ph(x, ξ) = h2/3Aα(x) + (ξ + iΦ′)2 + iV (x).

(here and in what follows, we omit to signal the dependence of the symbol with respect to
Φ in the notation). More precisely, we apply the setting of §4.1 with d = 1 and we consider
the following ordered families of Hilbert spaces.

Definition 4.9 (The ordered families HX , JX , MX). Let (HX)X∈R2 , (JX)X∈R2 , (MX)X∈R2

be defined by H = D, J = M = L2(R+), with the norms

∥u∥HX
:= ⟨ξ⟩2∥u∥D , ∥u∥2JX

:= ∥u∥2L2(R+) , ∥u∥2MX
= ⟨ξ⟩2∥u∥2L2(R+).

These families are ordered in the sense of Definition 4.4. In what follows, we abuse
notation by writing D⟨ξ⟩2 , L

2(R+) and L
2
⟨ξ⟩2(R+) instead of HX , JX and MX , respectively.

The following results follow immediately from the definitions and (4.12).

Proposition 4.10 (Symbols of L ϕ
h and Π1,α). The symbol (ph)h∈(0,1) belongs to S0(D⟨ξ⟩2 , L

2(R+))
and for any β ∈ N2, there exists Cβ > 0 such that the estimates

(4.13) ∀β ∈ N2 ,∃Cβ : |ph|0,β ⩽ Cβ max
n⩽|β|

∥∂nxΦ′∥∞

hold for any µ > 0 and any µ-subsolution Φ. Moreover,

(4.14) ∀h > 0 , L Φ
h = Opw

h (ph).

The symbol x 7→ π1,α(x) (independent of ξ and h) belongs to S0(L
2(R+), L

2(R+)) and

∀h > 0 , Π1,α = Opw
h (π1,α).

Proof. Since Aα(x) := α(x)Uα(x)A U∗
α(x) and π1,α(x) = α(x)−1Uα(x)π1U∗

α(x), the class es-
timate for ph and π1,α follow from the infinite differentiability with bounded derivatives of
the maps x 7→ α(x), x→ α−1(x) from R to R and x 7→ Uα(x), x→ U∗

α(x) from L2(R+) to D
The fact that π1,α belongs to S0(L

2(R+), L
2(R+)) follows from the expression (4.1) and the

property (3.11). The quantization formulas follow from (4.12). □

Observe that for all λ ∈ C,

(4.15) ph(x, ξ)− λ = h2/3(Aα(x)− zλ(x, ξ)) where zλ(x, ξ) :=
λ− [(ξ + iΦ′)2 + iV ]

h2/3
.
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Lemma 4.11. There exists η ∈ (0, 1) and for all µ > 0, there exists C, c > 0 such that the
following holds. For all R > 0, there exists h0 > 0 such that for all h ∈ (0, h0) and any
µ-subsolution Φ,

(4.16) λ ∈ D(λ1,α(0)h
2
3 , Rh) =⇒ zλ(x, ξ) ∈ Gη for all (x, ξ) ∈ R2,

where Gη is the region defined in (4.3).

Proof. We start by observing that for all (x, ξ) ∈ R2,

Re
(
e−iπ

4 [(ξ + iΦ′)2 + iV ]
)
= cos(π/4)

(
ξ2 − Φ′2 + 2ξΦ′ + V

)
= cos(π/4)

(
(ξ + Φ′)2 + V − 2Φ′2) ⩾ 0(4.17)

since Φ is a µ-subsolution.
Recalling the definition of aη from (4.2), for λ ∈ D(h2/3λ1,α(0), Rh) and (x, ξ) ∈ R2, we

deduce that

Re(e−iπ/4zλ(x, ξ)) ⩽ Re
[
e−iπ/4λ1,α(0)

]
+Rh1/3

⩽ cos(π/12)

(
|z1|(supα)2/3 +

Rh1/3

cos(π/12)

)
⩽ cos(π/12)(1− η)|z2|(inf α)2/3 = Re(e−iπ/4aη)

for h and η small enough, since |z1| sup(α)2/3 < |z2| inf(α)2/3 by Assumption 2.2. □

Proposition 4.12. Given µ ∈ (0, 1), there exists C, c > 0 such that the following holds. For
all R > 0, there exists h0 > 0 such that for any µ-subsolution Φ, h ∈ (0, h0), (x, ξ) ∈ R2 and

λ ∈ D(h
2
3λ1,α(0), Rh), there exists a unique rλ(x, ξ) ∈ L (L2(R+)) such that the following

properties hold:

(i) rλ(x, ξ)(p(x, ξ)− λ) = (p(x, ξ)− λ)rλ(x, ξ) = Id−π1,α(x).
(ii) The map λ→ rλ(x, ξ) is continuous.
(iii) rλ(x, ξ)(Id−π1,α(x)) = (Id−π1,α(x))rλ(x, ξ) = rλ(x, ξ).

Moreover, for every λ ∈ D(h2/3λ1,α(0), Rh), rλ ∈ C∞(R2;L (L2(R+))) and

(4.18) ⟨ξ⟩2∥rλ(x, ξ)∥L (L2(R+)) ⩽ Ch−2/3 , ∥y · rλ(x, ξ)∥L (L2(R+)) ⩽ Ch−2/3

Proof. Given x ∈ R, we denote E(x) := (Id−π1,α(x))(D) endowed with the norm ∥ · ∥D.
Since Aα(x) commutes with π1,α(x) for all x ∈ R, we may define for each x ∈ R and z ∈ C
an operator Lx(z) ∈ L (E(x)) by

Lx(z)u := h2/3(Aα(x)− z).

The application z 7→ Lx(z) defines a function Lx : C → L (E(x)) which is holomorphic.
Moreover, with zλ(x, ξ) as in (4.15),

(4.19) Lx(zλ(x, ξ)) = (ph(x, ξ)− λ)|E(x).

Next, let

Ω := D(λ1,α(0), Rh
1/3)− [(ξ + iΦ′)2 + iV ]

h2/3
⊂ C.

By Lemma 4.11, for h small enough, Ω ⊂ Gη, and in particular Ω ∩ σ(Aα(x)) ⊂ {λ1,α(x)}.
Hence, for z ∈ Ω \ {λ1,α(x)}, we can define another map Fx(z) ∈ L (E(x)) by

Fx(z) := (Aα(x)− z)−1(Id−Π1,α(x)).
21



For each x, the map z 7→ Fx(z) is holomorphic on Ω \ {λ1,α(x)} and bounded uniformly for
z in a neighborhood of λ1,α(x) thanks Proposition 4.1 and the fact that Ω ⊂ Gη. Therefore,

it admits a holomorphic extension to the whole Ω that we denote by F̃x. Moreover the
combination of Proposition 4.1 and Lemma 4.11 implies that

(4.20) (1 + |zλ(x, ξ)|)∥F̃x(zλ(x, ξ))∥L (L2(R+)) ⩽ C

(4.21) ∥F̃x(zλ(x, ξ))∥L (L2(R+),D) ⩽ C

Using the fact that Φ is a µ-subsolution, and Assumption 2.1, we notice that |zλ(x, ξ)| ⩾
ch−2/3|ξ|2 − Ch−2/3 (since |Φ′| ⩽ 1−µ

2

√
V ); thus (4.20) implies

(4.22) ⟨ξ⟩2∥F̃x(zλ(x, ξ))∥L (L2(R+)) ⩽ C.

On the other hand, using the elliptic estimate of Proposition B.2, (4.21) implies that

(4.23) ∥y · F̃x(zλ(x, ξ))∥L (L2(R+)) ⩽ C

For all z ∈ Ω \ {λ1,α(x)}, Fx(z)Lx(z) = Lx(z)Fx(z) = h2/3 IdE(x) and thus by continuity,

(4.24) ∀z ∈ Ω , F̃x(z)Lx(z) = F̃x(z)Lx(z) = h2/3 IdE(x)

Hence, if we define rλ(x, ξ) ∈ L (L2(R+),D) by

rλ(x, ξ) := h−2/3F̃x(zλ(x, ξ))(Id−π1,α(x)) ,

then by (4.24) and (4.19),

rλ(x, ξ)(ph(x, ξ)− λ) = (ph(x, ξ)− λ)rλ(x, ξ) = Id−π1,α(x)

which proves (i). The continuity (ii) is immediate. The property (iii) follows from the
definition of rλ(x, ξ) if λ ̸= λ1,α(x) and by continuity for λ = λ1,α(x). The uniqueness is
immediate for λ ̸= h2/3λ1,α(x)− [(ξ + iϕ′)2 + iV ] since in this case the operator p(x, ξ)− λ

is invertible, and follows for λ in the whole disk D(λ1,α(0)h
2
3 , Rh) by continuity. Since F̃λ is

holomorphic on Ω and (x, ξ) 7→ zλ(x, ξ) is infinitely differentiable, we deduce by composition
that (x, ξ) 7→ rλ(x, ξ) is infinitely differentiable. Finally, the estimates in (4.18) follow from
the boundedness of Id−π1,α(x), (4.22) and (4.23). □

4.3. Class estimates for rλ. To exploit the symbol rλ constructed above, we need to ensure
that it belongs to a suitable symbol class. To this end, we prove the following result.

Proposition 4.13. For all R > 0 and µ > 0, there exists h0 > 0 such that for all h ∈ (0, h0)

and all λ ∈ D(λ1,α(0)h
2
3 , Rh), the symbol (h2/3rλ)h∈(0,h0) belongs to S 1

3
(L2(R+), L

2
⟨ξ⟩2(R+)).

More precisely, for µ > 0 and β ∈ N2, there exists C > 0 such that the estimate

|h2/3rλ| 1
3
,β ⩽ Cmax

n⩽|β|
∥∂nxΦ′∥∞

holds for all λ ∈ D(λ1,α(0)h
2/3, Rh) and Φ any µ-subsolution.

Let us first summarize our method. The starting point is the following formulas for the
derivatives of rλ.
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Lemma 4.14 (First derivatives of rλ). Let λ ∈ D(λ1,α(0)h
2/3, Rh) and let rλ be defined by

Proposition 4.12. Then

∂xrλ = −rλ(∂xp)rλ − rλ(∂xπ1,α)− (∂xπ1,α)rλ.(4.25)

∂ξrλ = −rλ(∂ξp)rλ.(4.26)

Proof. This is obtained by differentiating the relation (i) of Proposition 4.12 and using the
relation (iii) of this proposition. □

The key point is that although ∥rλ∥L2→L2
⟨ξ⟩2

is O(h−2/3), the terms ∥(∂xp)rλ∥L (L2) and

∥(∂ξp)rλ∥L (L2), and more generally, all terms of the form ∥(∂βp)rλ∥L (L2) for |β| ⩾ 1, satisfy

the better bounds O(h−|β|/3). Finally, differentiating more times rλ leads to linear combina-
tions of terms of the form rλ(∂

β1p)rλ(∂
β2p)rλ . . . (∂

βJp)rλ, or “better terms”.
To formalize these ideas, we start by capturing precisely the structure of the β-th deriva-

tives of rλ.

Structure of the derivatives of rλ. The idea is that ∂βrλ is anN -term in the sense of Definition
4.16 below, with N -terms constructed from N -atoms that we define now.

Definition 4.15 (N -atom). Given N ∈ N and h0 > 0, we say that a family (aN(h))h∈(0,h0)

of elements of C∞(R2;L (L2(R+)) is an N -atom if either

(i) N = 0 and aN(h) = fh for all h ∈ (0, h0), where (fh)h∈(0,h0) ∈ S0(L
2(R+), L

2(R+)) is
independent of Φ.

(ii) N ⩾ 1 and for all h ∈ (0, h0),

aN(h) = f1,h · (∂βp) · f2,h · rλ · f3,h
where β ∈ N2 satisfies |β| = N , and where (fi,h)h∈(0,h0) ∈ S0(L

2(R+), L
2(R+)) are

independent of Φ, for i = 1, 2, 3.
(iii) N ⩾ 1 and there exists i, j ∈ {1, . . . , N − 1} satisfying i+ j ⩽ N and

aN(h) = ai(h) · aj(h)

where (ai(h))h∈(0,h0) is an i-atom and (aj(h))h∈(0,h0) is a j-atom.

In what follows, when it will not lead to confusion, we omit the dependence in h from
the notation. Observe that an N -atom aN is also an M -atom for any M ⩾ N (writing it as
1 · aN in case (iii), using that 1 is a 0-atom by case (i)).

Definition 4.16 (N -term). Given N ∈ N and h0 > 0, we say that a family (tN(h))h∈(0,h0)

is an N -term if it is of the form

tN(h) =
J∑

j=1

fj,h · rλ · aN,j(h)

for all h ∈ (0, h0), where J ∈ N, (fj,h)h∈(0,h0) ∈ S0(L
2(R+), L

2(R+)) are independent of Φ
and aN,j are N -atoms.

Similarly, we may omit the h-dependence from the notation of N -terms. Observe that if
tN is an N -term, it is also an M -term for every M ⩾ N .
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Proposition 4.17. If aN is an N-atom and f ∈ S0(L
2(R+), L

2(R+)), then f · aN is an
N-atom. Moreover, ∂xaN and ∂ξaN are linear combinations of a finite number of (N + 1)-
atoms.

Proof. The first statement is easily shown by definition and induction on N . For the second
statement, we only consider the case of the x-derivative (the other case is similar, but
simpler). We proceed by induction on N and consider the three cases (i)-(iii) of Definition
4.15 separately.

1. In case (i), the result is obvious. Hence, suppose that the result holds for all j-atoms with
j ⩽ N − 1 and let aN be an N -atom.

2. In case (ii), the only difficulty is to show that

bN+1 := f1 · ∂βp · f2 · (∂xrλ) · f3
is a linear combination of (N + 1)-atoms. Using the expression of the derivatives of rλ
from Proposition 4.14, this term reads

bN = f1 · ∂βp · f2 ·
(
− rλ(∂xp)rλ − ∂xπ1,αrλ − rλ∂xπ1,α

)
· f3

= cN · c1 − f1 · ∂βp · f̃2 · rλ · f3 − f1 · ∂βp · f2 · rλ · f̃3

where cN = −f · (∂βp) · g · rλ, c1 = ∂xp · rλ, f̃2 = f2 · ∂xπ1,α and f̃3 = ∂xπ1,α · h. Thus bN+1

is indeed a linear combination of (N + 1)-atoms.
3. In case (iii), the result follows by writing ∂xaN = ∂xai · aj + ai · ∂xaj and applying the

induction hypothesis.

This concludes the proof. □

Corollary 4.18. If tN is an N-term, then ∂xtN and ∂ξtN are (N + 1)-terms.

Proof. We only treat the x-derivative (the case of the ξ-derivative is similar and simpler).
Given an N -term tN , we write

∂xtN =
J∑

j=1

(∂xfj) · rλ · aN,j −
J∑

j=1

fjrλ

(N+1)-atom︷ ︸︸ ︷
[(∂xp) · rλ]︸ ︷︷ ︸

1-atom

· aN,j︸︷︷︸
N -atom

−
J∑

j=1

(fj∂xπ1,α) · rλ · aN,j −
J∑

j=1

fj · rλ · [(∂xπ1,α)aN,j]︸ ︷︷ ︸
N -atom

+
J∑

j=1

fj · rλ · (∂xaN,j)︸ ︷︷ ︸∑
(N+1)-atoms

,

and the conclusion follows by Proposition 4.17. □

Corollary 4.19. For any β ∈ N2, ∂βrλ is a |β|-term.

Proof. This follows by an immediate induction from Corollary 4.18, since rλ is a 0-term. □

Estimates of N-atoms and proof of Proposition 4.13. To proceed, we now estimate the norms
of N -atoms.

Proposition 4.20. If (aN(h))h∈(0,h0) is an N-atom, then there exists C > 0 such that for
all h ∈ (0, h0) and for any µ-subsolution Φ,

∥aN(h)∥L (L2(R+)) ⩽ Cmax
n⩽N

∥∂nxΦ′∥∞h−N/3.
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The proof relies on the following lemma

Lemma 4.21. For all R > 0 and µ > 0, there exists h0 > 0 and C > 0 such that the
estimates

(4.27) ∥(ξ + iΦ′)rλ(x, ξ)∥L (L2) ⩽ Ch−1/3

(4.28) ∥V ′(x)rλ(x, ξ)∥L (L2) ⩽ Ch−1/3

holds for all h ∈ (0, h0), (x, ξ) ∈ R2, λ ∈ D(h2/3λ1,α(0), Rh) and any µ-subsolution Φ.

Proof of Proposition 4.20. We claim that for β ∈ N2 with β ̸= 0 and f ∈ S0(L
2(R+), L

2(R+)),

(4.29) ∥(∂βp) · f · rλ∥L (L2(R+)) ⩽ Cmax
n⩽|β|

∥∂nxΦ′∥h−|β|/3.

If this is true, then the result of the lemma is easily obtained by induction on N . To show
(4.29), we write ∂β = ∂β1

x ∂
β2

ξ and consider the following cases separately

(i) If β2 ⩾ 2, then |β| ⩾ 2, ∥∂βp∥L (L2(R+)) ⩽ Cmaxn⩽|β| ∥∂nxΦ′∥∞, and thus

∥(∂βp) · f · rλ∥ ⩽ Cmax
n⩽|β|

∥∂nxΦ′∥∞∥rλ∥L (L2(R+))

⩽ Cmax
n⩽|β|

∥∂nxΦ′∥∞h−
2
3 ⩽ Cmax

n⩽|β|
∥∂nxΦ′∥∞h−|β|/3.

by the estimate (4.18) of Proposition 4.12.
(ii) If β2 = 1 and β1 = 0, then ∂βp(x, ξ) = 2(ξ + iΦ′), which is a scalar, and thus

∥∂βp · f · rλ∥ = ∥f · [(ξ + iΦ′)rλ]∥ ⩽ Ch−
1
3 = Ch−

|β|
3

by Lemma 4.21.
(iii) If β2 = 1 and β1 ⩾ 1, then |β| ⩾ 2, ∂βp = ∂β1

x Φ′, and thus we conclude as in case (i).

(iv) If β2 = 0 and β1 = 1, then ∂βp = h
2
3∂xAα + 2(ξ + iΦ′)Φ′′ + iV ′ and thus

∥∂βp · f · rλ∥ ⩽ C∥f∥L (L2(R+)

(
h2/3∥rλ∥L (L2(R+)) + C∥Φ′′∥∞∥(ξ + iϕ′)rλ∥+ ∥V ′rλ∥

)
and we conclude using Lemma 4.21 and the estimate (4.18).

(v) In the remaining case where β2 = 0 and β1 ⩾ 2, We can write

∂βp = (ξ + iΦ′)(∂β1
x Φ′) + g(x)

where ∥g∥L (L2(R+)) ⩽ Cmaxn⩽|β| ∥∂nxΦ′∥∞, and thus

∥∂βp · f · rλ∥ ⩽ Cmax
n⩽|β|

∥∂nxΦ′∥∞
(
∥rλ∥L (L2(R+)) + ∥(ξ + iΦ′)rλ∥L (L2(R+))

)
⩽ Cmax

n⩽|β|
∥∂nxΦ′∥∞h−2/3 ⩽ Cmax

n⩽|β|
∥∂nxΦ′∥∞h−|β|/3,

again by Lemma 4.21 and the estimate (4.18). □
Proof of Lemma 4.21. We start by showing the estimate (4.27).

1. When ξ2 + V ⩽ Ch2/3, the estimate follows by writing

∥(ξ + iΦ′)rλ(x, ξ)∥L2→L2 =
√
ξ2 + Φ′2∥rλ∥L2→L2 ,

using that ∥rλ∥ ⩽ Ch−2/3 by Proposition 4.12 and the fact that Φ′2 ⩽ (1−µ)
2
V .
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2. For ξ2 + V ⩾ Ch2/3, by adding the estimates

Re
[
(p(x, ξ)− λ)e−iπ

4

]
⩾ cV (x)− C0h

2
3 , Re (p(x, ξ)− λ) ⩾ ξ2 − Φ′2 − C0h

2
3 .

one obtains

(4.30) (ξ2 + V )∥rλu∥ ⩽ C∥u∥.

for h small enough, using that Φ is a µ-subsolution. ¨The result follows by writing

∥(ξ + iϕ′)rλ∥ ⩽ C
(ξ2 + V )∥rλ∥
(ξ2 + V )1/2

.

We now turn to the estimate (4.28).

1. If |x| ⩽ Ch1/3, then |V ′| ⩽ Ch1/3 since V ′(x) ∼ V ′′(0)x as x→ 0. Thus the result follows
immediately from the estimate ∥rλ∥L (L2(R+)) ⩽ Ch−2/3 of Proposition 4.12 in this case.

2. If |x| ⩾ Ch1/3 then, since (by Assumption 2.1) (i) V (x) is quadratic at x = 0, (ii) V (x) > 0
for x ̸= 0 and (iii) V is bounded below at infinity, there exists c such that V (x) ⩾ ch2/3

for all x ∈ R. Moreover, one has |V ′(x)|/V (x) ⩽ Ch−1/3 for all x ∈ R (since V ′/V ∼ 1
2
x−1

as x→ 0). Thus, using again the estimate (4.30) above,

∥V ′rλ∥ ⩽
|V ′(x)|
V (x)

V (x)∥rλ∥ ⩽ h−1/3(ξ2 + V )∥rλ∥ ⩽ Ch−1/3 ,

concluding the proof. □

Proof of Proposition 4.13. By Corollary 4.19, ∂βrλ can be written in the form

∂βrλ =
J∑

j=1

fj · rλ · aN,j

where fj ∈ S0(L
2(R+), L

2(R+)) and aN,j are N -atoms with N = |β| in the sense of Definition
4.15. Therefore by Proposition 4.20 and the first estimate in (4.18) in Proposition 4.12,

∥rλ∥L (L2(R+),L2
⟨ξ⟩2

(R+) ⩽
J∑

j=1

∥fj∥L (L2
⟨ξ⟩2

(R+))∥rλ∥L (L2(R+),L2
⟨ξ⟩2

(R+))∥aN,j∥L (L2(R+))

⩽ Cmax
n⩽N

∥∂nxΦ′∥∞h−2/3h−N/3,

since ∥fj∥L (L2
⟨ξ⟩2

(R+)) = ∥fj∥L (L2(R+)). This concludes the proof. □

4.4. Proof of Proposition 3.10. By the quantization formulas of Proposition 4.10 the
composition formula, the continuity of # and the class estimates of Proposition 4.13, we can
write

(4.31) (Id−Π1,α) = h−2/3Rλ(L
Φ
h − λ)− ih1/3K1 + h2/3K2

where

Rλ := Opw
h (h

2/3rλ) , K1 = Opw
h ({(h2/3rλ), ph}) , K2 = Opw

h (µh)

with

(4.32) (µh)(0,h0) ∈ S1/3(D⟨ξ⟩2 , L
2
⟨ξ⟩2(R+)) = S1/3(D, L

2(R+))
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and where for any β ∈ N2, there exists Cβ and Mβ such that

|µh| 1
3
,β ⩽ Cβ max

n⩽Mβ

∥∂nxΦ′∥∞.

The last equality in (4.32) eliminates the dependence in ξ from the spaces, and thus allows
us to apply the Calderón-Vaillancourt theorem (Theorem 4.7) to Opw

h (µh). Namely, there
exists N > 0 such that

∥K2u∥H ⩽ Cmax
n⩽N

∥∂Nx Φ′∥∥u∥L2(R;D),

where ∥u∥2L2(R,D) :=
∫
R ∥u(x, ·)∥

2
D dx. Moreover, since

S1/3(L
2(R+), L

2
⟨ξ⟩2(R+)) ⊂ S1/3(L

2(R+), L
2(R+))

holds with continuous inclusion, the Calderón-Vaillancourt theorem gives for some N > 0,

∥Rλ∥L (H) ⩽ Cmax
n⩽N

∥∂nxΦ′∥∞.

Using these estimates in (4.31) and the elliptic regularity result of Proposition B.3 leads to

∥(Id−Π1,α)ψ∥H ⩽ Cmax
n⩽N

∥∂nxΦ′∥∞
(
h−2/3∥(L Φ

h − λ)ψ∥+ h2/3∥ψ∥L2(R;D) + Ch1/3∥K1u∥H
)

⩽ Cmax
n⩽N

∥∂nxΦ′∥∞
(
h−2/3∥(L Φ

h − λ)ψ∥+ ∥L Φ
h ψ∥H + h2/3∥ψ∥H + Ch1/3∥K1u∥

)
⩽ Cmax

n⩽N
∥∂nxΦ′∥∞

(
h−2/3∥(L Φ

h − λ)ψ∥+ h2/3∥ψ∥H + Ch1/3∥K1u∥
)

since λ = O(h2/3). Therefore, to conclude, it remains to show that there exists N > 0 such
that

(4.33) ∥K1u∥H ⩽ Cmax
n⩽N

∥∂nxΦ′∥∞∥u∥H.

To this end, we compute its symbol using Proposition 4.14:

{(h2/3rλ), ph} = h2/3 (∂xrλ∂ξph − ∂ξrλ∂xph)

= −h2/3
(
rλ∂xphrλ∂ξph − rλ∂ξphrλ∂xph + (rλ∂xπ1,α + ∂xπ1,α)∂ξph

)
= (qh[∂xph, rλ] + qh∂xπ1,α + ∂xπ1,αqh)

where qh = (ξ+ iΦ′)(h2/3rλ) ∈ S1/3(L
2(R+), L

2(R+)) (since (h
2/3rλ) “gains” ⟨ξ⟩2). Moreover,

[∂xph, rλ] = [h2/3∂xAα(x), rλ] = [∂xAα(x), (h
2/3rλ)] ∈ S1/3(L

2(R+), L
2(R+)).

Therefore, {(h2/3rλ), ph} ∈ S1/3(L
2(R+), L

2(R+)) and it is also straightforward to check that
for any β ∈ N2, there exists Cβ and Mβ such that

(4.34) |{(h2/3rλ), ph}| 1
3
,β ⩽ Cβ max

n⩽Mβ

∥∂nxΦ′∥∞

using Proposition 4.13. The estimate (4.33) follows from (4.34) and the Calderón-Vaillancourt
theorem, concluding the proof. □‘
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5. Sharpness of Theorem 2.3

In this section, we show that Theorem 2.3 is sharp. More precisely we show that Theorem
2.3 does not hold for µ = 0. In particular, under the same assumptions, one cannot obtain
a O(hs) localization scale for s < 1

2
.

To show this, we produce a counter-example. Let α ≡ 1 and let V ∈ C∞(R) satisfy
Assumption 2.1 and furthermore V(− 1

2
, 1
2
)c ≡ 1. Let ψ the function obtained by setting µ = 0

in (2.4), i.e.,

ϕ =
1√
2

∣∣∣∣∫ x

0

√
V (s) ds

∣∣∣∣ .
We prove that there exists R > 0 and h0 > 0 small enough such that for every h ∈ (0, h0),
there exists λ ∈ D(|z1|eiπ/3h2/3, Rh) and ψ ∈ H2 satisfying (L − λ)ψ = 0 but eϕ/hψ /∈ H.
We construct ψ as the following tensorized function:

ψ(x, y) = f(x)uAi(y),

where uAi(y) is a Dirichlet eigenfunction of D2
y + iy associated to |z1|eiπ/3 (one can take

uAi(y) = Ai(yei
π
6 + z1)) and f is an eigenfunction of (hDx)

2 + iV associated to a complex
number µ ∈ D(0, Rh); such a pair (f, µ) exists for R large enough and h small enough, with
µ furthermore satisfying Re (µ) > 0, by [5, Proposition 3.6]. It is immediate by construction
that Lhψ = (|z1|eiπ/3h2/3 + µ)ψ. To show that eϕ(x)/hψ /∈ H, it suffices to show that the

“amplitude” a(x) := e
ϕ(x)(1+i)

h f(x) does not belong to L2(R) (by the Fubini theorem, and

since |a(x)|2 = |e
ϕ(x)
h f(x)|2).

Indeed, suppose by contradiction that a ∈ L2(R). The point is that a satisfies the differ-
ential equation

(5.1)
(
[hDx + i(1 + i)ϕ′]2 + iV − µ

)
a(x) = 0

which, noticing that for x ⩾ 1
2
, V = 1 and ϕ′(x) = 1√

2
, gives

−h2a′′(x) + 2ei
π
4 ha′(x)− λa(x) = 0 for x ⩾

1

2
.

Therefore, there exist α, β ∈ C such that

a(x) = αeθ1x/h + βeθ2x/h for x ⩾
1

2
,

where θ1 = ei
π
4 +

√
µ and θ2 = ei

π
4 −√

µ; from this, we deduce that the condition a ∈ L2(R)
is only possible if α = β = 0.

In particular, a satisfies the differential equation (5.1) together with the conditions a(1) =
a′(1) = 0; therefore, by uniqueness of the solution to this initial value problem, it follows a
vanishes on R. This implies f also vanishes on R, a contradiction.
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Appendix A. Proof of Lemma 3.5

1. Let u ∈ H2 and let ε > 0. There exists a bounded subet Ω ⊂ R× R+ such that∫
Ωc

|∆u|2 + |yu|2 + |u|2 dxdy ⩽ ε.

Let χ ∈ C∞(R× R+) satisfying χ ≡ 1 on Ω and such that Ω̃ := suppχ is bounded. Then
∥u− χu∥H2 ⩽ Cχε where Cχ > 0 depends only on χ.

2. Since Ω̃ is bounded, K := supΩ̃ y is finite, and if we find φ ∈ C∞(R× R+) satisfying
φ|R×{0} = 0 and ∥φ− u∥H2(R×R+) ⩽

Cε
1+K

with C independent of u, then we are done since

∥u− χφ∥H2 ⩽ ∥u− χu∥H2 + ∥χ(u− φ)∥H2 ⩽ Cχε+ (1 +K)∥u− φ∥H2(R2) ⩽ (Cχ + C)ε,

and the condition φ|R×{0} = 0 ensures that χφ ∈ H2.

3. By density of C∞(R×R+)∩H2(R×R+) in H
2(R×R+), we can find φ1 ∈ C∞(R×R+)∩

H2(R× R+) such that

(A.1) ∥u− φ1∥H2(R×R+) ⩽
ε

1 +K
.

The remaining issue is that φ1 may not vanish on R×{0}. However, by continuity of the
trace operator γ : H2(R× R+) → H3/2(R) (see [23, Lemma 3.35])

(A.2) ∥γφ1∥H3/2(R) = ∥γ(φ1 − u)∥H2(R×R+) ⩽ Ctr∥φ1 − u∥H2(R×R+) ⩽
εCtr

1 +K

where Ctr = ∥γ∥L (H2(R×R+),H3/2(R)). We now exploit the smallness of the trace γφ1 to
construct a small “correction” φ2 such that φ1 + φ2 vanishes on R× {0}.

4. Let φ2 := −φ1 + w where w is the unique solution in H1
0 (R × R+) of the variational

problem∫
R×R+

∇w · ∇v + wv =

∫
R×R+

∇φ1 · ∇v + φ1v for all v ∈ H1
0 (R× R+).

By standard elliptic regularity of the Dirichlet Laplacian, w ∈ C∞(R× R+)∩H2(R×R+)
and thus φ2 also belongs to this space by linearity. Moreover, −∆w + w = −∆φ1 + φ1,
thus ∆φ2 = φ2. Hence, by [23, Theorem 4.18], there exists Cell > 0 independent of u such
that

(A.3) ∥φ2∥H2(R×R+) ⩽ Cell

(
∥φ2∥L2(R×R+) + ∥γφ2∥H3/2

)
= Cell

(
∥φ2∥L2(R×R+) + ∥γφ1∥H3/2

)
since γφ2 = −γφ1.

5. We put φ := φ1+φ2. By what precedes, φ ∈ C∞(R× R+)∩H2(R×R+) and φ|R×{0} = 0.
Moreover, by (A.1), (A.2), (A.3) and the triangle inequality,

(A.4) ∥u− φ∥H2(R×R+) ⩽ ∥u− φ1∥H2(R×R+) + ∥φ2∥H2(R+) ⩽
(1 + C)ε

1 +K
+ Cell∥φ2∥L2(R×R+),

where C does not depend on u. Finally, using Green’s theorem, (A.2) and (A.3)

∥φ2∥2L2(R×R+) ⩽ ∥φ2∥2H1(R×R+) =

∫
R

∂φ2

∂y
(x, 0)φ1(x, 0) dx

⩽ ∥γ(∂yφ2)∥L2(R)∥γφ1∥L2(R) ⩽
Cε

1 +K
(∥φ2∥L2 +

Cε

1 +K
),
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where C is independent of u. This implies that ∥φ2∥L2(R×R+) ⩽
Cε

1+K
where C is indepen-

dent of u. Inserting this estimate in (A.4) concludes the proof.

Appendix B. Elliptic regularity estimates

Proposition B.1 (Basic elliptic estimate for L Φ
h ). For all µ > 0, there exists C > 0 such

that the estimate

h1/3 (∥Dyψ∥+ ∥√yψ∥) + ∥
√
V ψ∥H + ∥(hDx)ψ∥H ⩽ Cε−1∥L Φ

h ψ∥H + Cε∥ψ∥
holds for all h > 0, ε ∈ (0, 1), ψ ∈ H2, and Φ any µ-subsolution in the sense of Definition 3.1.

Proof. If Φ is a µ-subsolution, then the proof of [5, Proposition 2.2] shows that

Re ⟨e−iπ
4 L Φ

h ψ, ψ⟩ ⩾ h2/3(∥Dyψ∥2 + ∥√yψ∥2) + µ

2
∥
√
V ψ∥2.

In particular, by Young’s inequality, for any ε ∈ (0, 1),

(B.1) h1/3(∥Dyψ∥+ ∥√yψ∥) + ∥
√
V ψ∥H ⩽ Cε−1∥L Φ

h ψ∥H + Cε∥ψ∥H.
In turn, since

Re ⟨L Φ
h ψ, ψ⟩ ⩾ ∥(hDx)ψ∥2 − ∥Φ′ψ∥2

and since Φ′2 ⩽ 1−µ
2
V by assumption,

(B.2) ∥(hDx)ψ∥ ⩽
1− µ

2
∥
√
V ψ∥2 +Re ⟨L Φ

h ψ, ψ⟩ ⩽ Cε−1∥L Φ
h ψ∥H + Cε∥ψ∥H

by (B.1) and Young’s inequality. The proof is concluded by summing (B.1) and (B.2). □

Proposition B.2 (Elliptic regularity for the Airy operator). There exists C > 0 such that
for all u ∈ D,

∥yu∥L2(R+) + ∥D2
yu∥L2(R+) ⩽ C∥u∥D.

Proof. It is sufficient to show that

(B.3) ∥D2
yu∥L2(R+) ⩽ ∥u∥D

Indeed, recalling the definition of the D norm from (3.7), one can then use the triangle
inequality to obtain the other estimate

∥yu∥ ⩽ ∥D2
yu∥L2(R+) + ∥A u∥L2(R+) ⩽ C∥u∥D.

To show (B.3), we use the classical method of difference quotients of Nirenberg [25].

Namely, for u ∈ L2(R+) and h ∈ R, denote ∆hu := u(y+h)−u(y)
ih

. Recall that if u ∈ H1(R+),
then ∆hu converges to Dyu in L2 as h→ 0. Given u ∈ D, we write

(A u,D2
yu) = lim

h→0
(A u,∆−h∆hu) = lim

h→0
(∆hA u,∆hu)

= lim
h→0

(A ∆hu,∆hu) + ([A ,∆h]u,∆hu).(B.4)

But on the one hand, [A ,∆h]u = [iy,∆h]u = iu(· − h), so that

(B.5) lim
h→0

([A ,∆h]u,∆hu) = i(u,Dyu)L2(R+)

On the other hand

(B.6) Re (A ∆hu,∆hu) = ∥Dy(∆hu)∥2L2(R+) = ∥∆h(Dyu)∥2L2(R+) →h→0 ∥D2
yu∥2L2(R+).
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Thus, by (B.4)-(B.6), the Cauchy-Schwarz and the Young inequalities,

∥D2
yu∥2 ⩽ C

(
∥u∥2L2(R+) + ∥Dyu∥2L2(R+) + ∥A u∥2L2(R+)

)
and the conclusion follows since ∥Dyu∥2L2(R+) = Re(A u, u) ⩽ 1

2
(∥A u∥2L2(R+)+∥u∥2L2(R+)). □

Proposition B.3 (Elliptic regularity for L Φ
h ). There exists C > 0 such that for all ψ ∈ H2

and all h > 0,

(B.7)

(∫
R
∥u(x, ·)∥2D dx

)1/2

⩽ C
(
∥ψ∥H + h−

2
3∥L Φ

h ψ∥H
)
.

Proof. We start by showing that

(B.8) ∥φ(y)2ψ∥H ⩽ C
(
∥ψ∥H + h−

2
3∥L Φ

h ψ∥H
)

where φ : R → R+ is smooth and satisfies φ(y) =
√
y for y ∈ [1,+∞); this immediately

implies the same estimate with φ(y)2 replaced by y.
To this end, let χ ∈ C∞

c (R) be real-valued with χ ≡ 1 near 0 and let φδ(y) := χ(δy)φ(y)
and By the dominated convergence theorem,

(L Φ
h ψ, φ(y)

2ψ) = lim
δ→0

(L Φ
h ψ, φ

2
δψ) = lim

δ→0

(
L Φ

h (φδ(y)ψ), φδ(y)ψ
)
+
(
[L Φ

h , φδ(y)]ψ, φδ(y)ψ
)

We observe that

Im (L Φ
h φδ(y)ψ, φδψ) = h2/3(α(x)φδ(y)ψ, φδ(y)ψ) ⩾ ch2/3∥φδ(y)ψ∥2H

since α is bounded below. Moreover, since φ′ is bounded, ∥[L Φ
h , φδ]ψ∥ ⩽ Ch2/3(∥ψ∥H +

∥Dyψ∥H). Thus,

lim
δ→0

h2/3∥φδ(y)ψ∥2H ⩽ ∥L Φ
h ψ∥∥φδ(y)

2ψ∥+ Ch2/3(∥ψ∥H + ∥Dyψ∥H)∥φ(y)ψ∥H.

Using the basic elliptic estimate of Proposition B.1 with ε = h1/3 and using Young’s inequal-
ity, we deduce that

h2/3∥φδ(y)ψ∥2 ⩽ Ch−2/3∥L Φ
h ψ∥2H + h2/3∥ψ∥2H .

Sending δ to 0, we obtain (B.8).
We obtain the estimate

(B.9) ∥D2
yψ∥H ⩽ C

(
∥ψ∥H + h−

2
3∥L Φ

h ψ∥H
)

by the method of difference quotients as in the proof of Proposition B.2. We omit the detail,
since no new difficulty arises. Summing (B.8) and (B.9) and using the Fubini theorem∫

R
∥yψ(x, ·)∥2L2(R+) + ∥D2

yψ(x, ·)∥2L2(R+) dx ⩽ C
(
∥ψ∥H + h−2/3∥L Φ

h ψ∥H
)

which implies (B.7) by the definition of the D norm and the triangle inequality. □
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Appendix C. Existence of eigenvalues of Lh close to λ1,α(0)h
2/3

In this paragraph, we prove the following result

Proposition C.1. There exists R > 0 and h0 > 0 such that for all h ∈ (0, h0), Lh admits

at least one eigenvalue in the dist D(λ1,α(0)h
2
3 , Rh).

Proof. We use the following three steps, which are shown individually in separate lemmas
below.

(i) We show that the spectrum of Lh in a small disk D(0, c) consists exclusively of eigen-
values (Lemma C.2).

(ii) We show that if λ ∈ D(λ1,α(0)h
2/3, Rh) satisfies

dist(λ− λ1,α(0)h
2/3, Sh) ≳ h

where Sh =
{
ei

π
4 (2n − 1)κh | n = 1, 2, . . .

}
is the spectrum of the complex harmonic

oscillator h2D2
x + iκ2x2, with κ =

√
V ′′(0)

2
, then λ ∈ ρ(Lh) and

∥(Lh − λ)−1∥ ≲ h−1,

see Lemma C.3.
(iii) By (ii), there exists a small circle C := C (λ1,α(0)h

2
3 + ei

π
4 κh, εh) in the resolvent set of

Lh. Thus, the operator

Ph :=
1

2πi

∫
C

(z − Lh)
−1 dz

is well-defined. We then exhibit an explicit tensorized “quasimode” ψ for which we
prove that Phψ ̸= 0 (Lemma C.4). Thus Ph ̸= 0, which means that (z − Lh)

−1 cannot
be holomorphic in a closed disk containing C. In particular, the spectrum of Lh

cannot be empty in the disk D(λ1,α(0)h
2/3, Rh) and by (i), it follows that Lh admits

an eigenvalue in this disk.

□

Lemma C.2. There exists c > 0 and h0 > 0 such that for all h ∈ (0, h0), the spectrum of Lh

in D(0, c) is discrete and consists only of eigenvalues of Lh. Moreover, for all λ ∈ D(0, c),
Lh − λ is Fredholm of index 0.

Proof. It can be shown by a standard argument that Lh − z is Fredholm of index 0 for
z ∈ D(0, c) with c small enough (by adding a smooth, compactly supported perturbation
χ equal to a positive constant on the set where V (x) + y ⩽ lim inf∞ V

2
). For z = − c

2
, we

have Re ⟨(Lh + c/2)ψ, ψ⟩ ⩾ c
2
∥ψ∥2, thus Lh + c

2
is injective, hence an isomorphism; in

particular − c
2
∈ ρ(Lh). Since z 7→ Lh − z is holomorphic with respect to z, the Fredholm

analytic theorem (see, e.g., [10, Theorem C.9]) implies that the spectrum of Lh is discrete
and consists only of elements with finite algebraic multiplicity, hence eigenvalues (by [7,
Corollary 3.36]). □

Lemma C.3. If λ ∈ D(λ1,α(0)h
2/3, Rh) satisfies

dist(λ− λ1,α(0)h
2/3, Sh) ≳ h

32



where Sh =
{
ei

π
4 (2n−1)κh | n = 1, 2, . . .

}
is the spectrum of the complex harmonic oscillator

h2D2
x + iκ2x2, with κ = V ′′(0)

2
, then λ ∈ ρ(Lh) and

∥(Lh − λ)−1∥ ≲ h−1

Proof. We can use a particular case of Proposition 3.10 (applied with Φ = 0) to get

(C.1) h
2
3∥(Id− Π1,α)ψ∥ ⩽ C∥(Lh − λ)ψ∥+ Ch∥ψ∥ .

Moreover, using Corollary 3.8 (again with Φ = 0)

(C.2) ∥(Lh − λ)Π1,αψ∥ ⩽ C∥(Lh − λ)ψ∥+ Ch
4
3∥ψ∥.

We again observe (as in the proof of Proposition 3.9) that

(Lh − λ)Π1,α = [(hDx)
2 + Vh,eff − z]Π1,α

where Vh,eff = iV + h2/3(λ1,α(x)− λ1,α(0)) and, here, z ∈ D(0, Rh) satisfies dist(z, Sh) ⩾ εh.
Thus, by [5, Corollary 3.10] (adapting the proof as explained in Remark 1.2 (ii) of that
reference) and using the Fubini theorem,

(C.3) ∥(Lh − λ)Π1,αψ∥ ⩾ Ch∥Π1,αψ∥.

Combining equations (C.1)-(C.3), we deduce that

∥(Lh − λ)ψ∥ ⩾ Ch∥ψ∥.

Thus (Lh−λ) is injective, hence an isomorphism by Lemma C.2 and the conclusion follows.
□

Recall the operator Ph introduced in step (iii) of the proof of Proposition C.1.

Lemma C.4. The operator Ph is not equal to 0.

Proof. Let ψ = uAiry(y)fh(x) where

uAiry(y) := Ai(ei
π
6α(0)1/3y + z1) , fh(x) = h−1/4e−cx2/h

where c = eiπ/4κ. The point is that

(D2
y + iα(0)y)uAiry = λ1,α(0)uAiry and [(hDx)

2 + iκ2x2]fh = ei
π
4 κhfh ,

Thus, using Taylor expansions of V and α near x = 0, one can check that

(Lh − µ(h))ψ = O(h3/2)∥ψ∥,

where µ1(h) := λ1,α(0)h
2/3 + ei

π
4 κh. Therefore,

∥(Ph − Id)ψ∥ =

∥∥∥∥ 1

2iπ

∫
C

(
(ζ − Lh)

−1 − (ζ − µ1(h))
−1
)
ψ dζ

∥∥∥∥
=

∥∥∥∥ 1

2iπ

∫
C

(
(ζ − Lh)

−1(ζ − µ1(h))
−1
)
dζ (Lh − µ1(h))ψ

∥∥∥∥
⩽ Ch−1h3/2|ψ∥ = Ch1/2∥ψ∥.

In particular, Ph ̸= 0, concluding the proof. □
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Appendix D. Pollution by the Airy operator

In this paragraph, we outlie the pollution phenomenon alluded to in Remark 2.4(iv).
Firstly, it is possible to obtain a weaker localization result than Theorem 2.3, namely, a
localization at scale O(h1/3), by elementary manipulations of the quadratic form. Indeed it

is not difficult to show that for λ ∈ D(λ1,α(0)h
2
3 , Rh),

Re
[
e−iπ

4

〈(
eΦ(x)/h2/3

(Lh − λ)e−Φ(x)/h2/3
)
ψ, ψ

〉]
⩾ c

〈
(V − Ch2/3)ψ, ψ

〉
where c > 0 and C > 0 are independent of h, and Φ is a smooth bounded function satisfying
Φ(x) ⩾ min(1, x2). Here, the term Ch2/3 is simply due to the fact that λ = O(h2/3). This
leads to the Agmon estimate

∥eΦ/h2/3

ψ∥ ⩽ C∥ψ∥
for any eigenfunction ψ associated to λ. Since V (x) ∼ x2 as x → 0, this gives an O(h1/3)
localization in the x variable.

To understand why this argument fails to obtain the optimal O(h1/2) localization scale, it
is instructive to consider an analogous situation involving a self-adjoint counterpart of Lh –
namely, when we replace Lh by the operator

L sa
h := h2/3(D2

y + α(x)y) + (hDx)
2 + V (x)

In this case, the variational argument above can be improved by exploiting the fact that, by
the min-max principle, one has (in the sense of quadratic forms)

D2
y + α(x)y ⩾ µα(x)

where µ1,α(x) := α(x)2/3|z1|. Therefore, splitting λ ∈ D(µ1,α(0)h
2/3, Rh) as

λ = µ1,α(x)h
2/3 + (µ1,α(0)− µ1,α(x))h

2/3 + z ,

the action of L sa
h − λ is decoupled into an “Airy part” and an effective “Shcrödinger part”

via

L sa
h − λ = h2/3

Airy part⩾0︷ ︸︸ ︷(
D2

y + α(x)y − µ1,α(x)
)
+

Schrödinger part︷ ︸︸ ︷
h2D2

x + Vh,eff(x)− z

where Vh,eff(x) = V (x) + h2/3 (µα(0)− µα(x)), and, crucially, z ∈ D(0, Rh). Thus, we are in
the situation of the proof of Proposition 3.9, but the difference is that this decoupling is not
restricted to the image of the adiabatic projection Π1,α.
In contrast, in the complex setting, the “complex Airy part” A := D2

y + iα(x)y − λ1,α(x)
does not have a sign. Worse still, there exists ε > 0 such that

(D.1)

{
⟨Aψ,ψ⟩
∥ψ∥2H

∣∣∣ ψ ∈ H2

}
⊃ D(0, ε)

i.e., the numerical range of A, contains a neighborhood of 0 (this is an immediate consequence
of Corollary D.2 below). This leaves little hope of improving the O(h1/3) localization result
outlined in point (i) above by limiting oneself to direct arguments on the quadratic form.

We now show the claim (D.1). As in §3.2, we denote by A := D2
y + iy the complex Airy

operator on the Hilbert space L2(R+) with domain D defined by (3.2). The numerical range
of A is the subset of the complex plane defined by

W (A ) :=
{
⟨A ψ, ψ⟩ | ψ ∈ D and ∥ψ∥L2(R+) = 1

}
.
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The smallest eigenvalue in magnitude of A is given by |z1|ei
π
3 ; however, this value is not on

the boundary ofW (A ). To show this, we start by the following lemma, which is reminiscent
of the virial theorem.

Proposition D.1. Let u1 be an L
2-normalized eigenfunction of the self-adjoint Airy operator

A = D2
y + y for its smallest eigenvalue |z1|. Then

∥Dyu1∥2L2(R+) =
1

2
⟨yu1, u1⟩L2(R+) =

|z1|
3
.

Proof. Let a := ∥Dyu1∥2L2(R+) and b := ⟨yu1, u1⟩L2(R+). We have a + b = |z1|. Moreover, for

all γ > 0, consider uγ := u1(γy). Then by homogeneity,

f(γ) :=
⟨Auγ, uγ⟩
∥uγ∥2L2(R+)

= γ−2a+ γb.

The min-max principle states that f attains a global minimum for γ = 1. Thus f ′(1) = 0,
that is, b = 2a. □

Corollary D.2. There exists ε > 0 such that D(|z1|ei
π
3 , ε) ⊂ W (A ).

Proof. By Lemma D.1 and by homogeneity, for all γ > 0, W (A ) contains the complex
number

z(γ) :=
⟨A uγ, uγ⟩
∥uγ∥L2(R+)2

=
|z1|
3γ2

+ 2i
γ|z1|
3

,

where uγ(x) := u1(γx). Observing that

|z1|
3

< Re (|z1|ei
π
3 ) and

2|z1|
3

< Im (|z1|ei
π
3 ),

one can check that the triangle with vertices z(γ), z(γ−1) and z(1) ‘contains |z1|eiπ/3 in its
interior for γ large enough. Since W (A ) is convex (by the Toeplitz-Haussdorff theorem
[28, 17]), the conclusion follows. □
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