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ABSTRACT. We consider a non-self adjoint operator of the form —h2A + i(V(x) + a(z)y)
on the upper half plane y > 0 with Dirichlet boundary conditions on {y = 0} with V"> 0, V'
admitting a non-degenerate minimum at z = 0 and o’(0) = 0. We study its eigenfunctions
associated to the smallest eigenvalues in magnitude in the semiclassical limit h — 0. El-
ementary variational estimates show that these eigenfunctions are localized near the point
(0,0) at the scales O(h'/3) in z and O(h?/3) in y. In this paper, we show that the O(h'/?)
localization in x is not optimal; more precisely, we establish that the eigenfunctions are
concentrated in a neighborhood of size O(h'/2) of the axis {z = 0}, and this scale is shown
to be sharp. The proof relies on the symbolic calculus of operator-valued pseudodifferential
operators.

1. MOTIVATIONS AND QUESTIONS

1.1. Main motivation. The main motivation for this paper is the study of the “low-energy
eigenfunctions” (i.e., associated to smallest eigenvalues in magnitude) of the Bloch-Torrey
operator
%h = —h2A + iiﬂl

defined on an appropriate subspace of L*(2), where Q C R? is a smooth, bounded domain,
with suitable boundary conditions, in the semiclassical limit h — 0. More precisely, we
are interested in analyzing the localization phenomenon that takes place at the point of OS2
where x; is minimal; this phenomenon is illustrated by the numerical experiments displayed
in Figure 1 in the case of Dirichlet boundary conditions. Our goal is to tackle the following
question:

Q1: How are the low-energy eigenfunctions of the Bloch-Torrey operator localized?

In this work, we start addressing this question by considering a model operator on a half-
plane, obtained by local flattening near the point of minimal z;-coordinate, and we hope to
address Q1 in its full generality in a subsequent work.

1.2. Physical background. In their simplest form — in dimensionless units, without relax-
ation and with isotropic diffusion — the Bloch-Torrey equations read

M
dd_t(x’ t) = —igzM + AM

where M is the transverse magnetization of spin-bearing particles in a domain €2, subject to
a magnetic field with constant gradient g in the z direction.

These equations were derived in 1956 by Torrey [29] from the Bloch equations [6] to take
into account diffusion effects due to inhomogenous magnetic fields. They are used to describe
the magnetization diffusion of nuclei in a confined domain, and are the main model for the

imaging technique known as diffusion MRI, or dMRI (a variant of MRI, since the latter makes
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FIGURE 1. Plot of the magnitude of the L? normalized first eigenfunction
of the Bloch-Torrey operator —(27")2A + iz with Dirichlet boundary condi-
tions on the two-dimensional domain €2 bounded by the curve parametrized by
r(0) = cos(0)?+sin(6)? in polar coordinates, for n = 7,8,9,10 (from top-left to
bottom-right). The red intensity is proportional to the magnitude of the plot-
ted eigenfunction. Numerical computations were performed using the finite
element method with a refined mesh near the point of the boundary where the
eigenfunction is localized. The L? norm of the eigenfunction is indeed small
outside of a box of size O(h'/?) along the y-axis direction and O(h?/?) along
the z-axis, where h = 27™. The source code for these computations is available
at [30].

uses of constant magnetic fields), which is used for medical imaging, especially applied to
brain cells (see, e.g., [22]). The spectrum of the operator

—A+igz,

(usually considered with Neumann or Robin conditions) describes the relationship between
a measurable signal, obtained by spatially integrating the transverse magnetization data
over a region called “voxel”, and the microstructure of the imaged tissue see e.g. [14]. The
case of a large gradient g > 1 (which is equivalent to the semiclassical regime with h —
g~/?), or “localization regime”, was considered in a seminal paper [27], see also [12, 13, 24].
Localization effects (such as the ones visible in Figure 1) are connected to the phenomenon
of “diffusive edge enhancement”, in which boundaries of confining cells appear brighter on
reconstructed images, see [9, Section V]. As of yet, this localization regime is “yet poorly
understood and exploiting its potential advantages is still challenging in experiments” [24,
Section 5], see also [13] for related discussions.

We also note that the Bloch-Torrey operator appears in other physical applications, such as
superconductivity. For instance, the linearized time-dependent Ginzburg-Landau equations
near the “normal state”, under the assumption of vanishing magnetic field, lead to a model
close to the Bloch-Torrey equations, see, e.g. [2, Section 2.2].

1.3. Known results. The mathematical investigation of the spectrum of the Bloch-Torrey
operator was started by Almog in [2] in the context of superconductivity. This work was
followed by several others, (e.g. [18, 4, 3, 15]) which, together, show in various geometric
settings and choices of boundary conditions, that the “left-margin” of the spectrum o(%},)
satisfies

lim Re (0(%4)) = @;ﬂ/i’»

h—0 2
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where z; &~ —2.33811 is the rightmost real zero of the Airy function. In particular, an upper
bound on this quantity is obtained in [4] by showing that (under adequate non-degeneracy
assumptions on the boundary) in the case of Dirichlet boundary conditions, there exists an
eigenvalue A(h) of A, satisfying

AR) =i (igfan) + €312, |h3 + Kh + o(h),

where K is a constant related to the curvature of the boundary of 2 at the point of minimal
abscissa (this is a particular case of [4, Theorem 1.1] choosing V' = ;). The work [15]
furthermore constructs “quasimodes”, with associated “quasi-eigenvalues” close to A(h) —
i.e., approximate solutions (A(h), (k) of the eigenvalue problem

(B, — Mh))i(h) =0,

with A(h) &~ A(h). Their ansatz u(h) possess a localization property which is similar to the
one visible in Figure 1. However, the fact that these quasimodes are actually close to true
eigenfunctions is not known.

Recently, analytic dilation techniques were used in [19] to obtain approximations of the
low-energy eigenvalues of the more general operator —h?A + ez, a € |0, 3?”) These ap-
proximations agree with [9, Equation (23)] when o = 7. The eigenfunctions of the resulting
operator after analytic dilation are localized in a way that is completely understood. Unfor-
tunately, dilating back to the original coordinates, the localization information is lost: only
the spectrum is preserved.

The above results and their proofs suggest that the natural localization for the eigen-
functions is O(h?/?) in the normal direction and O(h'/?) in the tangential direction. We
also highlight that these localization results are known for a self-adjoint counterpart of the
Bloch-Torrey operator (i.e., replacing iz by 7 in the definition of %), see [8]; however, as
far as we are aware, they have not been proven for the complex version. Moreover, while the
O(h?/3) localization in the normal direction can be obtained via fairly standard arguments
(see Remark 2.4 (iv)), obtaining the O(h'/?) scale in the tangential variable appears to re-
quire new techniques and seems to be the main difficulty for answering Q1. In this paper,
we prove this O(h'/?) localization for a model operator on the half-plane.

1.4. Model operator. As suggested by the above discussion, we should focus on the point
of 02 where z; is minimal, which we can assume to be located at (0,0). Introducing a
normal parametrization v : [0, 1] — R? of 92, we can consider the system of coordinates

x(s,t) =v(s) +tN(s), (s,t) € (—s0,80) x (0,t0)
in a tubular neighborhood of (0,0), where N(s) is the unit normal vector at y(s) pointing

inside 2 (see Figure 2).
Discarding some curvature terms, we are led to considering the model operator

T = —h*(0? + 07) +ia(s)t +iV(s)
on the open set (s,t) € R x Ry, where a(s) and V(s) coincide with N(s) - e; and V(s) :=
v(s) - e1 respectively in a neighborhood of s = 0. In particular, assuming that the curvature
does not vanish at s = 0, the functions a and V' can be chosen to satisfy the following
properties:

(i) «(0) =1, &/(0) =0 and ap < a(s) < 1 for some ag > 0.
3
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FIGURE 2. Local parametrization of the boundary 02 near the point of min-
imal abscissa.

(ii) V(0) = V'(0) =0 and V”(0) > 0.
Through the change of variables t — h*3y and s — =z, this operator is unitarily equivalent
to
Ly = B3(D. +ia(z)y) + B2D2 + iV (),

where here and in what follows we denote D = —i0d. Numerical experiments displayed in
Figures 3 and 4 suggest that the low-lying eigenfunctions of %}, concentrate near the half-
line {x = 0} as h — 0, and are approximately of the form vy (z,y) ~ fn(x)uai(y) where
uai(y) is a “ground-state” of the one-dimensional, complex Airy operator DZ + 1a(0)y with
Dirichlet conditions on the half-line (one such eigenfunction is explicitly given by wua;(y) =
Ai(e'5a(0) 3y + 21)), and where f;, is localized at the scale O(h'/?). The goal of this paper
is to describe this localization in the z-variable i.e., answer the question

Q2: At what scale are the low-lying eigenfunctions of £, localized in the x-variable ?

We expect that the answer to Q2 is the key difficulty in answering Q1. More precisely, the
ellipticity of .Z}, (see Proposition 3.2 below) should be the main ingredient for obtaining the
tangential localization in the original problem.

2. ABOUT THE MAIN RESULT AND ITS PROOF
Let us now describe our main result and the strategy of its proof.

2.1. Statement of the main result. Let V,a : R — R be smooth, bounded functions.
For h > 0, let
L DPPRxR,) — LR xRy)

be the (unbounded) linear operator defined by
Ly = WD +ia(2)y) + (hD,)* + iV (2)
on the domain
(2.1) 22 = {w e HX R xR,)NHI(R x R,) | yv € LA(R x R+)}.
We introduce the following additional assumptions on V' and a.

Assumption 2.1 (Assumptions on V). The function V satisfies the following properties

(i) V is smooth and bounded as well as all of its derivatives.
4



FIGURE 3. Plot of the magnitude of the L? normalized first eigenfunction
of the operator %, with V' = 22 and o = 1 — 0.122, truncated to a square
domain [—R, R] x [0,2R] (R = 4) with Dirichlet boundary conditions on the
boundary, and for h = 27" with n = 4,6, 8,10 (from top-left to bottom-right).
The red intensity is proportional to the magnitude of the plotted eigenfunction.
Numerical computations were performed using the finite element method with
a refined mesh near near the axis {x = 0}. The L? norm of the eigenfunction
is small outside a box of size O(h'/?) along the 2-direction and O(1) along the
y-direction. The source code for these computations is available at [30].

|Ai(xe™® — z})|

T
X

F1GURE 4. Graph of the magnitude of the eigenfunction computed numer-
ically as in Figure 3 for n = 10 (left) and graph of the function z
|Ai(ze’s + z1)]| (right).

(ii)) V(x) > 0 for all x € R and V(z) vanishes only for z = 0. This minimum is
furthermore non-degenerate, i.e. V"(0) > 0.
(iii) V is bounded below at infinity, i.e., V., := llm‘a inf V(z) > 0.
T|—0o0
Assumption 2.2 (Assumptions on «). The function « satisfies the following properties

(i) « is smooth and bounded as well as all of its derivatives, and satisfies o > o for
some aq > 0.
(i) &/(0) =0,
(iii) It holds that
(2.2) (inf )3 |2o| — (sup@)#|z;| > 0
where z; &~ —2.33811 and 25 &~ —4.08795 are the the rightmost real zeros of the Airy

function.

For each z € R, we denote by Ay o(z) the “first” eigenvalue (i.e., smallest in magnitude)
of the complex Airy operator D} + icv(x)u on the half line with Dirichlet conditions, which
is given by
(2.3) Ma(2) i= ax)?3|2|e'5.
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Our main result below is an Agmon estimate (after S. Agmon, see [1]) describing the localiza-
tion in the z-variable of the eigenfunctions associated to the eigenvalues in D(\; o(0)h3, Rh)
in terms of the following Agmon distance

| viiias

_lom
(2.4) Oule) =~

where p € (0,1).

Theorem 2.3. Let V and « satisfy Assumptions 2.1 and 2.2, let R > 0, pn € (0,1) and let
¢, be defined by (2.4). There exist C, hg > 0 such that the estimate

(2.5) e /M| 2 @ur,) < Ol 2@, )
holds for all h € (0, hg), A € D (Al,a(())h%, Rh) and all ¥ € H? satisfying (L — N = 0.

Remark 2.4.
(i) Under Assumption 2.1, ¢,(z) ~ 52,/V"(0)2? as  — 0. Thus, roughly speaking, Theo-

rem 2.3 states that the eigenfunctions are exponentially localized in a O(h'/?)-neighborhood
of the (half) y-axis.

(ii) Theorem 2.3 is sharp, in the sense that the result does not hold if we allow p = 0 (in
particular, under the same assumptions, one cannot prove a localization at a scale O(h'/27%)
for any € > 0). This is shown in Section 5.

(iii) The condition (iii) in Assumption 2.2 is merely included to make the proof simpler, but
Theorem 2.3 holds without it. The reason is explained in the sketch of the proof in Section
2.3, see Remark 2.5.

(iv) It is possible to obtain a localization at scale O(h'/3), by using simple variational arguments.
The reason why this approach does not obtain the optimal O(h'/?) scale is related to a
“pollution effect” caused by the numerical range of the complex Airy operator. We explain
this in more details in Appendix D.

(v) The results of this paper can be used to show the existence of an eigenvalue of %, in
the disk D(/\LOC(O)h%, Rh) for R > 0 large enough — in particular, Theorem 2.3 has non-
empty assumptions. This is shown in Appendix C. The analog of this result is known
for Bloch-Torrey operators on bounded domains, and we thus recover it in our setting
by a new method. It can even be shown using analytic dilation arguments that the disk
D(Alja(O)h%, Rh) in fact contains the eigenvalue of .%}, that is smallest in magnitude, but
we do not prove this here for the sake of conciseness.

(vi) Although Theorem 2.3 is stated for Dirichlet boundary conditions, it is not difficult to check
that the proof in this paper extends to Neumann or Robin condition: the main difference
is that the zeros of the Airy function must be replaced by the zeros of its derivative
(for Neumann conditions) or of a generic linear combination of the Airy function and its
derivative (for Robin boundary conditions).

(vii) Our proof relies on a one-dimensional Agmon estimate in the range of a projection operator
related to the first Airy eigenfunction, and an operator-valued semiclassical pseudodiffer-
ential argument in the complement of this space, which seems to be new in this context.

We explain this in the next section.
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2.2. Sketch of the proof. We start by reducing the proof to an elliptic estimate for an
exponential conjugation of the operator, namely,

(2.6) lull £ A7HICLT = Mull + 1L gzigprrzyull

for all u € H? and A € D(\ (0)h*3, Rh), where ®(x) is a suitable weight function and
L2 = e®/h L e=2/h (see Proposition 3.2 below). Indeed, choosing u = e®/My), the first term
in the right-hand side vanishes, and the Agmon estimate follows by using that e®/* is h-
independently bounded on the set {|z| < h'/2}. To simplify the explanation, we now sketch
our method to obtain (2.6) in the particular case where ® = 0; the general case only involves
minor modifications, mainly due to the fact that £ and ., differ only by an operator of
order one.

The key idea is to regard the complex Schrodinger part h2D? + iV (z) as a perturbation
of the eigenvalue \, thus viewing &}, — A as

S — N = h*Ped, — Nz, hD,),

where o, = D + ia(x)y and Nz, &) == A — (€2 4+ iV(z)). This suggests that, roughly
speaking, a bound on (%, — \)™! could be obtained from an estimate of the “operator-

valued resolvent” (h?/3.a7, — \)~!. One way to formalize this idea is to use the concept of
pseudodifferential operators with operator-valued symbols (the main results needed here are
recapped in §4.1). Namely, we rewrite

L, — X = Op, (W ety (x) — A, €))

where for each = € R, @, () := D +ia(z)y is a one-dimensional differential operator acting
on a subspace of L?(R,) with Dirichlet boundary conditions at y = 0. The quantization Op,,
works analogously to a semiclassical quantization on scalar symbols. The operator o7, (z) is
well-understood: its spectrum consists of the simple eigenvalues given by

Ana(T) = a(x)2/3|zn|ei% ,

where z, is the n-th real zero of the Airy function. This leads to the following natural
question: does the region

U= {n2X(2.&) [ h>0, X € DO a(0)hF, ), (2,6) R} € C

contain any poles of (&, (z) — z)~'? The answer is that, since £ > 0 and V(z) > 0, the
perturbation —(£2+44V') “pushes” the eigenvalue A towards the “south-west” of the complex
plane. In particular, U is contained in a diagonal half-plane P as represented in Figure 5.
Assuming that for all x € RY Ay ,(r) remains sufficiently larger than \;,(0) for all z,
the only possible pole of (h*34/,(z) — 2)™' in U is Ay (x)h*3. The previous condition is
guaranteed for h small enough provided that

(inf @)?/3| 25| > (sup )*3| 2],

i.e., if «v satisfies the condition (iii) in Assumption 2.2.

To capture the influence of the pole Ay ,(z), it is useful to introduce the spectral projection
T.o(z) onto to the one-dimensional eigenspace associated to A4 (z). The point is that
h2/3.e7,(x) — Xz, €) can be boundedly inverted on the range of Id —71,(2), and the inverse
r(x,§) is itself a sufficiently well-behaved symbol (see Proposition 4.13). The quantization

of this inverse will give a first-order parametrix for £® — . Indeed, using a composition
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FIGURE 5. Poles of the resolvent (o, (z) — 2z)~! (red), a region P C C (blue
hatched half plane) enclosing the set U of the values taken by h=2/3\(z, ) for
(z,6) € R? and A € D(A1,(0)h%3 Rh)

theorem for pseudodifferential operators with operator-valued symbols (Theorem 4.8 below),
we obtain

Op,,(r(x,€))0p,, (h*? o (x) — Nz, €)) = Id —Op,, (1.0) 4 remainders,

In other words, writing R := Op,,(r(z,£)) and II; 4 := Op,(71,4), we have
R(%Z, — \) = 1d -1, , + remainders.

(see (4.31) below). We then use the Calderén-Vaillancourt theorem (Theorem 4.7 below) to
show that || R|| < h~2%/3 as well as to control the remainder terms. This leads to the estimate
(2.7) 11~ o )ull S 222 (1(L = Aull + B2 full,
(see Proposition 3.10).
Remark 2.5 (Removing the assumption on «). To avoid using the condition (iii) in As-
sumption 2.2, one should instead invert the symbol of %}, — A in the range of Id —my o(z) —

. — Tna(x), where m; ,(x) is the spectral projection on to the eigenspace associated to
Aio(7), and where n is large enough so that (inf a)?/3|z,,1| > (sup a)?/3|z].

To complete the proof of the estimate (2.6), it remains to estimate the contribution of
II; pu. For this, we notice that

(L — Mo = (Ma(@)h?? + (hD,)? 43V — A) I 4;

that is, on the range of II; ,, the operator 7, is just the pointwise multiplication by Ay o (z).
This effectively removes the pollution problem alluded to in Remark 2.4 (iv), allowing to
show the estimate

(2.8) I qull S A7 — My qul + 111 p<pee T qul)
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via simple variational arguments for a one-dimensional complex Schrédinger operator (see
Proposition 3.9). The estimate (2.6) is finally obtained by summing (2.8), (2.7), combined
with an estimate of the commutator %, I1; ] (Corollary 3.8).

2.3. Organization of the paper. The remainder of this article is organized as follows. Sec-
tion 3 reduces the proof of Theorem 2.3 to an elliptic estimate (Proposition 3.2), which, after
introducing a projection operator Il ,, is further split into two key estimates, respectively
on the range of Iy ,, and (Id —II, , ). The first one follows immediately from the properties of
IT; ,, and is presented in §3.3. Moreover, the (short) proof that Theorem 2.3 follows from the
main elliptic estimate can be found in §3.1. Section 4 — the bulk of the paper — is devoted
to the second and more subtle key estimate on the range of Id —II, ,. Finally, in Section 5,
we establish the sharpness of Theorem 2.3.

We also include several appendices. Appendix A proves a density result used in the proofs
of Section 3. Appendix B gathers elliptic regularity estimates for the operators involved in
the paper. Appendix C shows that our method gives the existence of an eigenvalue of %,
in the disk appearing in the assumption of Theorem 2.3. Finally, Appendix D discusses the
“pollution” by the Airy operator mentioned in Remark 2.4 (iv).

2.4. Notation. Here we gather some of the notation used throughout this article. Let
C>(R?) denote the space of infinitely differentiable functions in R¢ with compact support,
and . (R%) the Schwartz space. For a closed subset ' C R? .7(F) denotes the set of
restrictions to F' of elements of .%(R%). For n € N and X € R", let

() = (1+ [X[2)72,

Let D = 19 (i.e., D,, = %6‘: and similarly for Dg, and so on). We denote by || - ||~ the
supremum norm on R?.

We write Z(FE, F) for the space of bounded linear maps between the normed spaces E
and F' with the norm

Ax
Al #(g,F) == sup u
wernor ||7e

When E = F (with equal norms), we put Z(F) := Z(E, E) and let || - || #(g) denote the
corresponding norm. As usual, the adjoint of a (possibly unbounded) operator A is denoted
by A*, and the transpose AT is the operator defined on dom(A*) by

ATy .= A,

Given two operators A, B, we denote by [A, B] = AB — BA their commutator, whenever
it makes sense. Given a Hilbert space H and an (unbounded) linear map A : H — H,
we denote by o(A) C C the spectrum of A and by p(A) C C its resolvent set. We denote
by D(zo,r) the open disk centered at zy € C and with radius » > 0, and by €' (zo,r) its
boundary, with the counter-clockwise orientation when used in contour integrals.

Let H := L*(R x R;). We denote by | - |[gxr, and (-,-)rxr, its usual norm and inner
product, and we will often drop the R x R, subscript when it will not lead to confusion. Let
H? be as in (2.1) with the norm

1152 = llII* :HAwHQ +[lyw].



We also consider the space
D={feHAR)NHIR,) | yf € *(R)},
endowed with the norm
LA1B = IR, + 197 £l

where &/ := D2+ iy and || - ||g, denotes the L* norm on R;. We denote by .27, the operator
defined on H? by

(2.9) Ao = D2+ ia(z)y

(i.e., <7, acts on functions of the variables z and y) and for each z € R, we write .27, (x) for
the operator defined by the same formula but acting on D (i.e., for each x, <7, (x) acts on
functions of the variable y).

Let Ai be the standard Airy function which can be defined for x € R by the semi-convergent

integral
Ai(z) 1/00 Coot)
i(r) = — cos| =+
T Jo 3 ’

and let 0 > z; > z5 > ... be the sequence of its zeros (23 ~ —2.33811, z, ~ —4.08795,
23 &~ —5.52056, etc.). For every z € R and n € N, we write
(2.10) Analr) = a(x)?3]2,]e'5.

To lighten the proofs, we will often denote by C' any generic positive constant whose value
can be bounded independently of the universally quantified variables in the statement.

3. REDUCTION TO ELLIPTIC ESTIMATES

3.1. Elliptic estimate for a conjugate operator. In this section, we reduce the proof of
Theorem 2.3 to a global elliptic estimate (Proposition 3.2 below) for a conjugate operator of
the form

(3.1) L2 = M L = B2, + (WD, + i®')? +iV.

Considering the leading order in h, one can guess that the eikonal equation ¢(x)? = iV (x)
should play a role. Namely, here we consider weights ® in (3.1) that are controlled by the
real part of the eikonal solution ¢ in the following sense.

Definition 3.1 (u-subsolution). Let p € (0,1) and let ® : R — R, be an infinitely differ-
entiable function which is bounded as well as all of its derivatives.
We say that ® is a p-subsolution if it satisfies

vV — 297 > uV.

Proposition 3.2 (Main elliptic estimate). For any R > 0 and pu € (0,1), there exists
C(R,p) >0, hg >0, L >0 and N > 0 such that the inequality

lull < C(R, ) max 029 (h (252~ Null + 1 Lajcpnvyul)

holds for any h € (0,hg), A € D(Alya(O)hg, Rh), u € H? and for any p-subsolution ®.

This result is obtained as a direct consequence of Propositions 3.9 and 3.10 below. We

now show that Theorem 2.3 follows from Proposition 3.2.
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© /Va(s) ds‘

with V4 = Vxa, where x4 = x(z/A) where x > 0, supp x C [—1, 1] and X = 1 near 0. Then
® 4 is a p-subsolution. Moreover, ®4 < ¢, and the derivatives of ¢’y are uniformly bounded
(in terms of V', x, and A); hence by Proposition 3.2 applied to u := ePally),

le®47M1p]| < C(R, ho)| L quj<pnrszye®™ )l < C(R, ho) |1 qajcnrzye® ||
where, importantly, C'(R, hg) is independent of A. Using the Fatou lemma, we conclude that
e/ M p]| = lim inf [|e® /]| < C(R, ho) [ Lgacrnrzye™ ]l

Proof of Theorem 2.3 using Proposition 3.2. For A > 1, consider ® 4(x

The result follows using that 1y, <pp1/2y¢, can be bounded independently of h, since ¢,
behaves quadratically near x = 0. U

3.2. The projection II; , and its properties. Proposition 3.2 will be proved separately
on the range and the kernel of projection operator II; ,. We now define this operator and
establish some of its properties. Let .o be the complex Airy operator on the half-line, i.e.,
the unbounded linear operator defined by

o = D; + 1y
densely defined on the domain
(3.2) D= {f € HAR,) N HI(R,) : yf € LA(R,)}.

This operator has been studied in [16, 26]. Its adjoint <7* is the unbounded linear operator
defined by @* = D} — iy with domain D; thus,

(3.3) T = d.

For any = € R, let «7,(z) : D — L*(R,) be defined by

(3.4) o) := D2 + ia(z)y.

Observe that

(3.5) Ve eR, do(z) = a(z) U (x) /Uy (z)*
where U, (z) : L*(R,) — L*(R,) is the unitary operator

(3.6) Ual) () = o) f(alw) )

It is well-known that 7 is closed (see, e.g., [26, Proposition 3]), and thus, so is @7, (z) for
each x. In what follows, we equip D with the graph norm

(3.7) IFIB = 11 £1&. + Il flIz,

The operator ./ has compact resolvent and its spectrum is given by
o() = {|zles | n=1,2,...}

where 0 > z; > 2o > ... is the sequence of the real zeros of the Airy function. Let m; :
L*(Ry) — L*(Ry) be the Riesz projector

1
(3.8) T o= (z — o) L dz

210 S (1211675 )

where r < |2za| — |21].
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Proposition 3.3. There exists u, € D satisfying </u; = |z |e’5u; and (U1, ) 2ryy = 1
(where (-,-)r, denotes the standard inner product of L*(R;)). Moreover,

mf = ([, u)r, for all f € L*(Ry).
Proof.
1. We first observe that for z € v, since & is closed and densely defined, ((z — &)~ ')* =
(z — &*)71, thus
x 1 -1
=g 7,(z o) dz
where 7/ is a circle centered at |z;|e”"/3 and with radius 7 < |z5| — |21].
2. Let u; be an eigenvector of o/ associated to |z]e’5. Observe that &ty = @/u; =
|z1|e”" /3%y, Since the eigenvalues of ./ and .7* are algebraically simple, it follows (see,
e.g., [7, Proposition 3.35]) that Ran(m;) = Span({w;}) and Ran(n}) = Span({@;}). Thus
there exist v, w € L*(R) such that for all f € L*(R,),

mf = (f,v)r,u, wf=(f w)r, U

In particular, Ker(m;) = {v}* and Ran(n}) = Span({%;}). Since Ker(m;) = Ran(7})*, it
follows that v = cu; for some ¢ € C.
3. Since mu; = u1, we deduce from step 2 that

(uy, cur)r, = 1;

in particular, ¢ # 0 and (uy,U)r, = % Choosing ¢ such that ¢? = ¢, it is easy to check
that the function @ := ¢’u; satisfies the requirements. ]

In what follows, we fix u; as in Proposition 3.3 and for all z € R, we denote

(3.9) Uaw(Y) = (Ua(®)u1)(y)-
For all x € R,
(3.10) (Uazs Uaz)r, = (Ua () Ua(T)ur, T)r, = 1;

Since u; € #(Ry), one can check that the map R > = — wu,, € L*(Ry) is infinitely
differentiable and satisfies

(3.11) VEeN, 30, >0: Vo eR, | Druy.|r, < Ck.
Let j, : L?(R) — H be defined for f € L*(R,) by

Gaf)(@y) i= f(2) - tauly) for all (z,y) € R x R,
and let jI : H — L?(R) be its transpose, i.e.,

(3.12) Uat, ey = W, (oS Nexry s (0, ) € H x L*(Ry).
By the Fubini theorem,
(3.13) (Jat¥)(@) = (W(2,), Uas), -
Definition 3.4 (The operator II; ,). We define II; , : H — H by
M = Ja* Ja-

To avoid worrying about the pointwise evaluation of almost-everywhere defined functions,

it will be convenient to use the following density result. Its proof can be found in Appendix A.
12



Lemma 3.5. The space
X :=C*RxR,)NH?

is dense in H*. Here, C®°(R x R, ) denotes the set of restrictions to R x Ry of functions in

C(R?).

Proposition 3.6 (Elementary properties of j, and Ily,). The maps j, : L*(R) — H,
JIH — LA(R) and Iy, : H — H are bounded and satisfy
(i) 42 - ja = Idp2) and I 4 is a projection (i.e., 117 , =111 o).
(ii) The embeddings jo(H*(R)) C H?, jT(H?) € H*(R) and (thus) 11y o(H*) C H?, hold
and are continuous.
(ili) II; o F" = FlIly, holds for any multiplication operator of the form (Fu)(x,y) :=
F(z)u(z,y).
(iv) Iy 0o = DoIly o = M1 oll1 o as operators from H? to L*(Ry x R), where A1, is the
multiplication operator (A qu)(x,y) == A o(z)u(z,y), with A\ o(x) defined by (2.10).
Proof.
(i) From (3.10) and the Fubini theorem, we deduce that (jau, jo¥)rxr, = (U, v)r, which
implies that j7 - jo = Ida(). Thus T2, = (ju-32) - (o 47) = ja- (GF o) 47 = 1.
(ii) The continuous embedding j,(H?*(R)) follows from the definition of j, and the
property (3.11). On the other hand, for ¢y € X, the combination of (3.13) and
(3.11) and differentiation under the integral sign implies that j1¢ € H?(R) with
17Z Y] 2y < [|1¥]l32, and the continuous embedding ;1 (H?) € H?*(R) follows by
density.
(iii) By definition of j,, it is immediate that j,F' = Fj, (where F' stands both for the
multiplication operator on L?(R) and on H). It follows by taking the transpose that
JPF = FjT, and thus I o F = (jo - JL)F = F(jo - j2) = F; 4.
(iv) For any f € H*(R),
%a(jaf) = /\l,a(jaf)
by definition of j, and using that for all z € R, (D} + a()iy)taes = AMa(2)taz. By
taking the transpose and using that <7 = o7, it follows that j7.«%, = j7\;,. Thus
by (i),
Hl,a%af = Ja 'jgﬁaf = Ja - ]Z:O‘l,ozf) = /\Laja ]gf = /\l,aHLaf‘
This shows that I1; %, = A1 4111 , and by taking the transpose and using again (iii),
it follows that ﬂanl,a = )\170[1_[17&. [

Proposition 3.7 (Estimate of the commutators [D? 11, ,]). There exists C > 0 such that
for all v € H?,
H[Di7H1,a]wHRXR+ < C”wa|’R><R+-

Proof. For ¢ € C(R x R, ) N'H?, one can check that
Hl,al/)(xa y) = <¢zam>R+ua,z'

In this case, the claimed inequality is then obtained by differentiating under the integral sign
and using (3.11). The result follows for any ¢ € H? using the continuity of [D2,II; ,] from

H? to H (by property (ii) of Proposition 3.6) and density (Lemma 3.5). |
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Corollary 3.8. For all R > 0, p € (0,1), and hy > 0, there exists C > 0 such that the
estimate

L7 M alllrxz, < CHY [ @llrxr, + CHPI(L = Nz,

holds for all h € (0,ho), A € D(A14(0)h?/3, Rh), ¥ € H? and ® any p-subsolution in the
sense of Definition 3.1.

Proof. By Proposition 3.6, [£42,11; ,] = h?[D?,11; 4], and thus by Proposition 3.7,
1% o] l[rxr, < CRI[(hDg) Y[R, -
Using the basic elliptic estimate of Proposition B.1, we deduce that for any ¢ € (0, 1),

1% Lyl < Cehll (2 — )whm++hGA+:wWhmw

and the conclusion follows by taking ¢ = h~/3. O

3.3. The two key elliptic estimates. With the operator II; , at hand, we can now state
the two key elliptic estimates used to prove Proposition 3.2.

Proposition 3.9 (Elliptic estimate on Ran(Il;,)). Let R > 0 and u € (0,1). Then, there
exist hg > 0, C(R, p, ho) > 0, and L > 0 such that the inequality
(3.14)

M a¥llrxz. < C(R, 1 ho) (WHI(LE = Nllexy + [ Lqacrnrzy¥llrxe. + 5719 ]|rxe, )
holds for any h € (0, hg), A € D(A1o(0)h3, Rh), u € H? and any p-subsolution .
Proof. By Proposition 3.6,
(L = Mia = ((AD, +i9') + Vier] = )Tl
on H2, where Vyoq = iV +h23(A1o()—A1.a(0)) and z = A=\, o (0)h5 satisfies z € D(0, Rh).
Denoting 7% := (hD, + i®')? + V}, ¢, we observe that for all f € H?*(R),
(A5 — 2)f, Nr = [I(hD2) fIIz + 2iRe (((hD2) f, @' f)g) + (Vies — D% = 2)f, )

where || - HR and (-, -)g stand for the norm and inner product of L?(RR), respectively. Multiply-
ing by e~"%, taking the real part, using that 2Re (((hD,)f, ®'f)r) = —||(hD.)f|% — |®'f|I2
and |z| < Rh we deduce that

Re [e 5 ((Ag — 2) [, f )]
> cos(m/A)((V = 207 — Ch)f, f)y + 1 cos(m/12)]z1[( (a5 — a(0)3) £, )
> o[V + 13 (a5 —a(0)%) — Ch]f. f)s,
for some ¢ > 0, since ® is a p-subsolution. We then write
Vizg)  [V(x)
2 * 2

and notice that, under Assumptions 2.1 and 2.2, for A small enough, the term between square
brackets in the right-hand side is non—negative for all z € R. Therefore,

(3.15) Re [efi%« 2)f, f> } Ch“f”R Chl|Liv<eny flI%-

V(z) + hi(a(z)s — a(0)5) = + BB (o) — a(0)7?)]



Given y > 0 and ¢ € C°(R x Ry) NH?, we apply (3.15) to f = (Il1,¢)(-,y) € H*(R).
Integrating in y and using the Fubini theorem, we deduce that

||H1,aw‘|]%§><]R+ < Ch™'Re [eﬂg«gh — M a9, Hl,a¢>RxR+] + Cly<omat [,

and the same follows for all 1) € H? by density (Lemma 3.5). Finally, using the Cauchy-
Schwarz inequality, the fact that II; , commutes with 1y<cpny (by Proposition 3.6 (iii)),

0¥ lrxr, < CRTH(ZY — Matllrxr, + CllLiveen®|lrxr, ,

and the result follows by the commutator estimate of Corollary 3.8 and the fact that V(z) ~

@ﬁ for z close to 0. ]

Proposition 3.10 (Elliptic estimate on Ran(Id —II; ,)). Let R > 0 and p > 0. There exists
C(R,p) >0, hg >0 and N > 0 such that the inequality

(3.16) [[(1d ~Ih0)¢ lrxr, < C(R, p) max 1059 oo (B3 (L2 = N llrcs + 22 [ llx, )

holds for any h € (0,hg), A € D()\l,a(())h%, Rh), v € H?, and any p-subsolution ®.
The proof is the object of the next section. It is completed in §4.4.

4. ELLIPTIC ESTIMATE ON THE RANGE OF Id —II; ,

Recall the Riesz projector m and the unitary operator U, (z) from §3.2. For x € R, let
1
T a(T) = o) PU (@)U (2)* = 5 (a(z)z — Ao(z)) dz.
gl
.
Observe that by Proposition 3.3 and rescaling,
(4.1) T1a(2)u = (U, Ua z)R, Yoz

where u, , is defined by (3.9).
Given n > 0, let

(4.2) a, = (1- 77)]22|e”/3,

(4.3) G, = {z € C | Re[((inf @)*?a, — 2)e"7] > O} ;

observe that G, is a translated and rotated half-plane, and that provided that the condition
(2.2) in Assumption 2.2 holds, G, N o(<Z,(z)) = {A\1o(x)} for all z € R and 7 small enough
(see the sketch of the proof in §2.3, especially Figure 5).

Proposition 4.1 (Resolvent estimate for o7, (x)). Suppose that o satisfies Assumption 2.2.
Then, for any n > 0, there exists C,, > 0 such that for all z € R and z € G, \ {\,(2)},

_ C,
(4.4) (o () = 2) 7 (1d =71 0 (2)) | 2(22m 1)) < N +"|Z|-
and
(4.5) 1(o(x) — 2) 7' (Id =71,0(2)) | 222, ),0) < C-
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Introducing the set
EF,:={z€C | Re e’ an—z} 0},
Proposition 4.1 is a consequence of the following result and a scaling argument:

Proposition 4.2. For any n € (0,1), there exist C} > 0 such that for all z € F, \ {z€'5},

O/
4. o —2)"HId — 2 < —1
(4.6) ( 2)" (Id —m1)[| 2(z2®,)) 5[]
(47) ||($Z{ — Z)_l(Id _7Tl>||$(L2(]R+),D) < C,:] .

Proof of Proposition 4.1 from Proposition 4.2. The definitions of F;, and G, imply that for
all v € R,

2€ Gy \ {Ma(@)} = al2) Pz e B\ {|ale™?).
Thus, given z € G, \ {A\1,.(z)} and letting ¢ := a(x) "3z, Proposition 4.2 ensures that
(e = ¢) (Id —m) || 22y < O,
and the L? estimate (4.4) follows by writing (with U, (z) defined by (3.6))
[(o(x) — 2) 7 (Id =710 (2)) | 2222 4).0)
= ||t (@) ()5 — a(@)3¢) " aar) 5 (Id —m1)Un ()"
< O — Q) 1d —m) | (r2(ry )

since a~! is bounded (by Assumption 2.2) and U,(x) is unitary. The estimate (4.5) is
obtained similarly from (4.7), using that U,(xz) maps D to itself continuously thanks to
Assumption 2.2. O

Z(L*(R+),D)

To prove Proposition 4.2, we start by the following lemma.

Lemma 4.3. For any 0y > 0, there exists C' > 0 such that the estimate

_ C
(4.8) (o = 2) 22w,y < B

holds for any complex number z # 0 in the sector 5 + 6y < arg(z) < 27 — 6.
Proof. For all v € D
(4.9) Re (e7((o/ — 2)v,v)) = cos(8)||Dyv||* + sin(0)|\/yv||> — Re(e™™2)||v]|>.
In particular, since 6 € [0, 5],

Re (e7{(o/ — 2)v,v)) = —Re (e 2)|v|*.

Applying this to v := (& — 2)"u, using the Cauchy-Schwarz inequality and assuming
Re (e7%2z) < 0, we deduce that
1

4.10 o —2)7 S ST
( ) I1( z) HJ(L2(R+)) |Re(e*“’z)]’

16



Next, let f : [m/2 + 0y,2m — 6] — [0,5] be such that cos(p — f(p)) < 0 for all ¢ €
[7/2 4 0y, 21 — 6p). For example, one can take
0 it per/2+6,7]
flo)=<m/4 if p € [r,3n/2)
/2 if ¢ € [37/2,21 — 6y].
Then .
M = min > 0.
pelr/2+00,2r—00] | cos(p — f(p))]
For z = |z|e" with ¢ € [1/2 + 6y, 27 — 6y, we can apply (4.10) with 6 := f(¢) to obtain
M

(o = 2) " z2®,)) < R

concluding the proof. O
Proof of Proposition 4.2. For z € F,\ {|z1]e"™?}, let
F(Z) = ”(% - Z)_l(Id _7Tl)||,$(L2(]R+))~
Given 6y € (0, 7), Lemma 4.3 ensures that there exists Cy, > 0 such that
Co
F(z) < 7
2|
for all z # 0 in the sector S(6p) := {z € C | Z + 0y < arg(z) < 27 — 6p}. This implies that

for all z € Q := S(6y) \ D(0,1),

20,
F < o,
(&) <5 E

Therefore, it remains to show that there exists C' > 0 such that
sup (14 |z[)F(2) < 400
2€K\{|z1]ei™/3}

where K := F,, \ 2 is a compact set (see Figure 6). To this end, for 6 > 0 small enough, we
write

K = D(|z1|e™3,6) U (K \ D(|z1]e™3,6)).
It is immediate that (1 + |2|)F(2) is bounded on K \ D(|z]e"™/3,§) since this is a compact
subset of p(«7). Finally, for z € D(]z|e'5,0) \ {|z1|e'5 }, we write

~1
(d—z)l(Id—Hl):T/ (=) @) e
L J%(|z4]e" 5 26)
Thus,
B 1 _ _
(o7 — 2)7H(1d —T1,) | <2—/ ¢ =) la¢
T J (12118 20)
<2 max  [((-2)7 <o

CEC(|21)e' 5 26)

since €(|z1|€'5,20) is again a compact subset of p(<7). This implies that (1 + |z|)F(2) is
also bounded on D(|z|e'5,0) \ {|z1|e"/3}, completing the proof of the L? estimate (4.6).
17



In turn, the estimate (4.7) in the D norm follows from the L? estimate (4.6) since
(e = 2)7 (Id —m)ullp = (& — 2) 7 (Id —m1)ull 2wy + |2 (& — 2)7 (1 —m1)ull 2z
< L+ 2D = 2)7H1d =m)ull 2y + [l 2ey)- u
arg(z) = 5 + 0o

o

77 N
Nzl
L
af.
Q +
|21

N

FIGURE 6. The regions of the complex plane involved in the proof of Propo-
sition 4.2. The region F;, is the half-plane lying to the south-west of the blue
dashed line. The subset of F), which lies to the left and bottom of the solid
purple line is the one denoted by {2 in this proof, and the orange shaded area
is the compact set denoted by K.

4.1. Recap of semiclassical pseudodifferential operators with operator-valued sym-
bols. This paragraph uses the results about semiclassical pseudodifferential calculus with
operator-valued symbols from [20, Chapter 2], [21] (in french), see also [11, Appendix B].
For the reader’s convenience, we recall here the material needed for our purposes. The idea
is to consider a family of operators p(x, &) (considered as symbols), indexed by the variable
(z,€) € R? and to construct an operator P = Op}’(p) by a Weyl quantisation analogous to
the one used with scalar-valued symbols.

Definition 4.4 (Ordered family of Hilbert spaces, [20, Definition 2.1.1]). A family (7% ) x cged
of Hilbert spaces is an ordered family of Hilbert spaces if it satisfies the following properties:

(1) For all X € R?® ¢ = = H0,0)-
(2) There exists C;, N > 0 such that for all X,Y € R?? a € A,
lalls < C(X =Y)"|alls -
Definition 4.5 (Symbol class S5(#%, #x), [20, Definition 2.1.2]). Let (%) xerza, (_Zx)erzd
be ordered families of Hilbert spaces. For ¢ € [0, 1), the symbol class S5(#%, #x) is the set

of families (py)ne(o,n) Of elements of C®(R*, £ (2, #)) such that for all 8 € N2, there
exists Cg > 0 such that

Vh € (0,h), VX € R*,  |0°pn(X) |2, rn) < Cah™V.
18



In what follows, we denote

(PR neopo) 85, v = sup  sup W07 py(X) || 2, i)
he(0,ho) X €R2d

or simply |pp|s s for short, when this will not lead to confusion.

Definition 4.6 (Weyl quantization of operator-valued symbols, [20, Definition 2.1.7]). Let

Hx, Fx be two ordered families of Hilbert spaces, let § € [0,3) and let (pn)reony) €

Ss(Hx, Zx). Then the Weyl quantz’zatz’on Opy (pr) of (Pr)he(o,hy) 1s defined by

(4.11) (OpY (p)u) (z) = %h //R eR@0Ep, (20 ) u(y) dyde, = € R?

for u € S (R?, ), where the integral is defined as a Bochner integral.

Just as in the scalar case, direct manipulations of the definition show that for p(z, £) = p(x)
and q(z,€) = £ with a € N¢,

(4.12) (Opj (p)u)(x) = p(x)u(z),  Opjy(q)u = A Dgu.

We will use the following two main results which are analogous to the ones for semiclassical
pseudodifferential operators with scalar-valued symbols:

Theorem 4.7 (Calderén-Vaillancourt [20 Theorem 2.1.16]). Suppose that for all X € R*,
Hx = H, Ix = F. Letd € [0,1), let (ph)he(o h) € Ss(A, #). Then, the Weyl
quantization Opy (pr) in (4.11) extends to a unique linear continuous operator

Opjy (p) : L*(R?, ) — L*(RY, 7)
and there exists C' > 0 and M > 0 such that for all h € (0, hg)

10PE (on) | 212w, 22080,y < € D B2 sup 07pn(X)l| 207, )
G<Md X eR2d
Theorem 4.8 (Composition, [20, Theorem 2.1.12]). Let (5 ) xerza, ( Fx)xered, (M x) xer2d
be sorted families of Hilbert spaces, let § € |0, %) and let (an)neo,ny) € Ss(Hx, Fx) and
(bh)he(o,ho) c Sa(/X, Mx). Then there exists a unique symbol family (ch)he(o,ho) S S&(/Xu Mx)
such that for all h € (0, hy),

Opy, (arn)Opy, (br) = Opy, (cp)-
For all h, we write
ap#by, = cp.
The map # : Ss(Hx, Fx) x Ss( Ix, Mx) — Ss(Hx, Mx) is continuous, in the sense that
for all B € N*?_ there exists Cg, Mg > 0 such that

lan#bnlsp < Cs sup  |anls,p|balsp
|B|<Mg

For any N € N*, a,#by, satisfies

N Nk

1 [(ih

anrbn = Z ja (3) [o(Dx, Dy)*(an(X)br(Y)] | _ + AN TO2Dry
k=0
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for some rni1 € Ss(Hx, Mx), where, writing X = (x,€) and Y = (y,n), and denoting by
D, D¢, Dy, D, the operators of differentiation corresponding to these variables,

o(Dx, Dy)u(X,Y) = (D¢ - D, — D, - D,)u(X,Y).

For our purposes, only the following particular case of the composition formula will be
required:

h
and#bn = anby + E{ah, bp} + W22y
where ro € S5(x, Zx), and where {f, g} = 0,f0¢g — O¢ fO,g is the Poisson bracket of f
and g.

4.2. Construction of the approximate inverse. We now use the previous theory to con-
struct an approximate inverse of .£* — X by quantizing the inverse of its principal (operator-
valued) symbol.

In view of the expression of .£¥, its operator symbol is given by

pn(x, &) = W3, (x) + (€ +i9)2 + iV (z).

(here and in what follows, we omit to signal the dependence of the symbol with respect to
® in the notation). More precisely, we apply the setting of §4.1 with d = 1 and we consider
the following ordered families of Hilbert spaces.

Definition 4.9 (The ordered families 7%, #x, #x). Let (#x)xere, ( Fx)xer2, (A x)xer?
be defined by # =D, ¢ = .# = L*(R,), with the norms
lulls = ()*llullo,  Mull’r = lullio@,),  ullln = € uliz,)-

These families are ordered in the sense of Definition 4.4. In what follows, we abuse
notation by writing D2, L*(Ry) and L?QQ(RJF) instead of %, #x and .#x, respectively.
The following results follow immediately from the definitions and (4.12).

Proposition 4.10 (Symbols of . and I1, ). The symbol (Pr)ne(,1) belongs to So(Dygyz, L*(R))
and for any 8 € N2, there exists Cg > 0 such that the estimates

(4.13) VBEN?,3Cs :  Ipnlos < Cs max 107 %o

hold for any p > 0 and any p-subsolution ®. Moreover,

(4.14) Yh>0, £ =O0pY(p).

The symbol x +— w1 4(x) (independent of & and h) belongs to So(L*(R.), L*(Ry)) and
Vh >0, II,=0p}(71a)

Proof. Since o, (z) := a(x)U,(2) U (x) and 71 4(2) = a(z) U, (z)mU:(x), the class es-
timate for p;, and m , follow from the infinite differentiability with bounded derivatives of
the maps x — «a(z), z — o (z) from R to R and z — Uy,(x), * — U*(z) from L?*(R,) to D
The fact that 7, belongs to So(L*(Ry), L*(R,)) follows from the expression (4.1) and the
property (3.11). The quantization formulas follow from (4.12). O

Observe that for all A € C,
A — (€4 i®")? 44V

(4.15)  pplx, &) — X\ = h¥3 () — 20(x,€))  where zy(z,8) = o
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Lemma 4.11. There exists n € (0,1) and for all pu > 0, there exists C,c > 0 such that the
following holds. For all R > 0, there exists hg > 0 such that for all h € (0,hq) and any
u-subsolution P,
(4.16) A € D(A\o(0)h3, Rh) = z\(z,€) € G, for all (z,¢) € R?,
where Gy, is the region defined in (4.3).
Proof. We start by observing that for all (z,&) € R?,
Re (e73[(& +49')* +iV]) = cos(m/4) (€* — 7 + 29" + V)
(4.17) = cos(m/4) (§+ @) +V —207) >0
since @ is a p-subsolution.

Recalling the definition of a, from (4.2), for A\ € D(h?3X, ,(0), Rh) and (z,¢) € R?, we
deduce that

Re(e ™2\ (z,€)) < Re [e7™*\; 4(0)] + Rh*?
RS
< cos(m/12) (|zl|(sup )3 + W)
< cos(m/12)(1 — n)|zo| (inf @) = Re(e~"™*a,)
for h and 7 small enough, since |z;|sup(a)?3 < |z,| inf(a)?? by Assumption 2.2. O

Proposition 4.12. Given pu € (0,1), there exists C,c > 0 such that the following holds. For
all R > 0, there exists hg > 0 such that for any p-subsolution ®, h € (0, hy), (z,€) € R? and
A € D(h3)A14(0), Rh), there exists a unique ry(x,&) € L(LA(R,)) such that the following
properties hold:

(1) T)\(ZE,E)(p("E,g) - /\) = (p(l’,§) - )\)T’)\<J],§) =1d _71—1,&(11)'

(ii) The map A — ry(z,&) is continuous.

(ii) ra(z, )(1d —ma(®)) = (Id —ma(@))ra(z, §) = ra(z, £).
Moreover, for every A € D(h*3); ,(0), Rh), my € C=(R?; Z(L*(R,))) and
(4.18) &Iz, )l zwe@ey < CRP, 0y ma(@, )l zwamey < Ch™7
Proof. Given = € R, we denote E(x) := (Id =7 o(2))(D) endowed with the norm | - ||p.
Since 7, (x) commutes with m () for all x € R, we may define for each z € R and z € C
an operator L,(z) € Z(F(x)) by

L.(2)u := h?3(d,(x) — 2).

The application z — L,(z) defines a function L, : C — Z(E(z)) which is holomorphic.
Moreover, with z)(x, &) as in (4.15),

(4.19) Ly(2A(2,8)) = (pa(2,6) = N)|5(a)-
Next, let

§+id)? +iV
Q 1= DOnu(0), B — h233 lcc

By Lemma 4.11, for A small enough, Q C G,, and in particular Q N o (e, (z)) C {M.a(2)}.
Hence, for z € Q\ {1 (z)}, we can define another map F,(z) € Z(E(z)) by

F.(2) = (#,(2) —212)_1(Id —I1; o ()).




For each x, the map z — F,(z) is holomorphic on Q \ {\; »(z)} and bounded uniformly for
z in a neighborhood of A; ,(x) thanks Proposition 4.1 and the fact that 2 C G,,. Therefore,

it admits a holomorphic extension to the whole 2 that we denote by F,. Moreover the
combination of Proposition 4.1 and Lemma 4.11 implies that

(4.20) (1+ 2x(@ DI F (@, )| 22 may) < ©

(4.21) 1Fe(za (2, )| 220y < C

Using the fact that @ is a p-subsolution, and Assumption 2.1, we notice that |z)(z,&)| >
ch=2/3|€]2 — Ch™2/3 (since || < PT“\/V), thus (4.20) implies

(4.22) (M1 F(2x(z, ) #r2yy < C.
On the other hand, using the elliptic estimate of Proposition B.2, (4.21) implies that
(4.23) ly - Folz2a(z, &)l z2@.)) < C

For all z € Q\ {\io(2)}, Fu(2)Ly(2) = Ly(2)Fu(2) = h*31d () and thus by continuity,
(4.24) VzeQ, Fu(2)La(2) = Fu(2)La(2) = h?*1d g
Hence, if we define ry(z,&) € Z(L*(R),D) by

ra(z, €)= h™2PE,(z\(x, €))(Id =y o(z))
then by (4.24) and (4.19),

(2, €)(pn(2,€) = A) = (pa(2,€) = A)ra(z,§) = 1d —m1.0(2)

which proves (i). The continuity (ii) is immediate. The property (iii) follows from the
definition of 7\(z,€) if A # A 4(z) and by continuity for A = Ay 4(z). The uniqueness is
immediate for A\ # h%3)\; () — [(€ + i¢')? + iV] since in this case the operator p(z, &) — A
is invertible, and follows for X in the whole disk D(A;4(0)h3, Rh) by continuity. Since F) is
holomorphic on 2 and (x, &) — z)(z, ) is infinitely differentiable, we deduce by composition
that (z,&) — ra(x,&) is infinitely differentiable. Finally, the estimates in (4.18) follow from
the boundedness of Id —m; ,(z), (4.22) and (4.23). O

4.3. Class estimates for r,. To exploit the symbol r, constructed above, we need to ensure
that it belongs to a suitable symbol class. To this end, we prove the following result.

Proposition 4.13. For all R > 0 and p > 0, there exists hg > 0 such that for all h € (0, hy)
2

and all A € D(A\1o(0)h3, Rh), the symbol (h*37)\)ne(ony) belongs to S%(LQ(RJF),L%Oz(RQ)-

More precisely, for u > 0 and B € N2, there exists C > 0 such that the estimate

2/3 < ¥
B3] 5 < Cmas 029

holds for all A € D(\ o(0)h%3, Rh) and ® any u-subsolution.

Let us first summarize our method. The starting point is the following formulas for the

derivatives of 7.
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Lemma 4.14 (First derivatives of 7). Let A € D(\ o(0)h*3, Rh) and let 75 be defined by

Proposition 4.12. Then

(4.25) Oxrr = —7A(0xp)rx — TA(02T1.0) — (0xT1.0)T A

(426) 857")\ = —r,\(ﬁgp)r,\.

Proof. This is obtained by differentiating the relation (i) of Proposition 4.12 and using the

relation (iii) of this proposition. O
The key point is that although ||7"/\||L2—>L? . is O(h=2/3), the terms [|(8,p)r:|l2r2) and

3

1(0ep)ral| #(12), and more generally, all terms of the form [|(8°p)ry|| #(12) for |B] > 1, satisty
the better bounds O(h~1%/3). Finally, differentiating more times 7 leads to linear combina-
tions of terms of the form ry(0%1p)ry(9%2p)ry ... (0%7p)ry, or “better terms”.

To formalize these ideas, we start by capturing precisely the structure of the g-th deriva-
tives of ry.

Structure of the derivatives of ry. The idea is that 0°ry is an N-term in the sense of Definition
4.16 below, with N-terms constructed from N-atoms that we define now.

Definition 4.15 (N-atom). Given N € N and hy > 0, we say that a family (ax(h))ne(o,ho)
of elements of C*°(R?; Z(L*(R,)) is an N-atom if either
(i) N =0and ay(h) = f, for all h € (0, hy), where (fa)ne(o.n) € So(L*(Ry), L*(Ry)) is
independent of .
(ii)) N > 1 and for all h € (0, ho),
an(h) = fin- (8°p) - fon-7x- fan
where § € N? satisfies |5] = N, and where (f;1)neon,) € So(L*(Ry), L*(Ry)) are
independent of ®, for i = 1,2, 3.
(iii) N > 1 and there exists ¢,j € {1,..., N — 1} satisfying i + j < N and
an(h) = ai(h) - a;(h)
where (a;(h))ne(o,n) is an i-atom and (a;(h))re(,n) is @ j-atom.
In what follows, when it will not lead to confusion, we omit the dependence in h from

the notation. Observe that an N-atom ay is also an M-atom for any M > N (writing it as
1-ay in case (iii), using that 1 is a 0-atom by case (i)).

Definition 4.16 (N-term). Given N € N and hy > 0, we say that a family (¢x(h))ne(0,no)
is an N-term if it is of the form

J
tn(h) =D fin-ra-any(h)
j=1

for all h € (0, hg), where J € N, (fin)neony) € So(L*(Ry), L*(Ry)) are independent of
and ay; are N-atoms.

Similarly, we may omit the h-dependence from the notation of N-terms. Observe that if

ty is an N-term, it is also an M-term for every M > N.
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Proposition 4.17. If ay is an N-atom and f € So(L*(R.),L*(Ry)), then f - ay is an
N-atom. Moreover, Oyay and Ocan are linear combinations of a finite number of (N + 1)-
atoms.

Proof. The first statement is easily shown by definition and induction on N. For the second
statement, we only consider the case of the x-derivative (the other case is similar, but
simpler). We proceed by induction on N and consider the three cases (i)-(iii) of Definition
4.15 separately.

1. In case (i), the result is obvious. Hence, suppose that the result holds for all j-atoms with
7 <N —1and let ay be an N-atom.
2. In case (ii), the only difficulty is to show that

by = f1- 3[3]9 “fa (&J’A) - f3

is a linear combination of (N + 1)-atoms. Using the expression of the derivatives of ry
from Proposition 4.14, this term reads

bN = fl : 86]9 : f2 . ( - T/\(actp)r)\ - aacﬂ-l,ozr)\ - T)xaxﬂ-l,a) . f3
:CN'Cl—fl'aﬁp'ﬁ'%\'f?,—fl'85}0']”2'7“)\'%
where cy = —f-(@ﬂp) “g-Tx, €1 = Ogp Ty, f2 J2 - 0,14 and f3 Oz - h. Thus by
is indeed a linear combination of (N + 1)-atoms.
3. In case (iii), the result follows by writing d,ay = 0,a; - a; + a; - 0ya; and applying the
induction hypothesis.
This concludes the proof. 0

Corollary 4.18. Ifty is an N-term, then Oty and Octy are (N + 1)-terms.

Proof. We only treat the z-derivative (the case of the ¢-derivative is similar and simpler).
Given an N-term ty, we write

J (N+1)-atom
, ]Z_; j g Z ) J
= 1-atom N-atom

J J
Z [i0uT10) - TA - aNj — Zf] rx - [(0sm10)an ;] —l—ij Tac (Owany)
J=1 _V_' N e’

N-atom J=1 > (N+1)-atoms

and the conclusion follows by Proposition 4.17. U
Corollary 4.19. For any 8 € N2, 0ry is a |3|-term.

Proof. This follows by an immediate induction from Corollary 4.18, since ) is a 0-term. [

Estimates of N-atoms and proof of Proposition 4.13. To proceed, we now estimate the norms
of N-atoms.

Proposition 4.20. If (an(h))ne(ony) 5 an N-atom, then there exists C' > 0 such that for
all h € (0, hg) and for any p-subsolution ®,

lan (W)l 2(z2(e)) < Cmax |97 [|aoh™ />,
n<N
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The proof relies on the following lemma

Lemma 4.21. For all R > 0 and p > 0, there exists hg > 0 and C > 0 such that the
estimates

(4.27) 1(€ + 99" )ra(z, &) 2(z2) < CRTY?

(4.28) IV (@)ra(@, )l 222y < Ch™2

holds for all h € (0, h), (z,€) € R%, X € D(h*3\; 4(0), Rh) and any p-subsolution ®.
Proof of Proposition 4.20. We claim that for # € N? with 3 # 0 and f € So(L*(Ry), L*(R.)),
(4.29) 10°p) - f - rall 2@y < C{iﬁ [ I

If this is true, then the result of the lemma is easily obtained by induction on N. To show

(4.29), we write 9% = 9% 8’8 > and consider the following cases separately
(i) If B2 > 2, then | B8] = 2, |0°p|l #r2®, ) < C max,<|g [|079 ||, and thus

”(35> fonmll < Cm%{HG”CI) HooH?“AHJL2R+))

< C'max||07 @' ||oo]f§ < C'max H&;Z’(I)’Hooh*\ﬂl/s.
n<|B n<|B]
by the estimate (4.18) of Proposition 4.12.

(ii) If B, = 1 and B, = 0, then 0°p(x, &) = 2(¢ + i®’), which is a scalar, and thus
18]

18D - f-rall = || - [(€ +i®)ry]|| < Ch™5 = Ch™ 5
by Lemma 4.21.
(iii) If By = 1 and B; > 1, then |3| = 2, 8°p = 951®’, and thus we conclude as in case (i).
(iv) If Bo = 0 and 8, = 1, then 0°p = h38,4, + 2(£ +i®)®” 4 iV’ and thus
10%p - f - rall < Cllflleaaey (B2 Irall 2z, + CI ool (€ + i yrall + [IV'7All)

and we conclude using Lemma 4.21 and the estimate (4.18).
(v) In the remaining case where 5y = 0 and ) > 2, We can write

0%p = (€ +i®) (9 ) + g(x)
where ||g|| z2@r,)) < Cmax,g ||0} ||, and thus

10°p - f-rall < Cm&“g(' 1020 || (IIrall 22,y + 1(€ +i®) Al 2r2y))

< O |00 o5 < C e |02 kA
n<|B] n<|B|

again by Lemma 4.21 and the estimate (4.18). O
Proof of Lemma 4.21. We start by showing the estimate (4.27).

1. When €2 4+ V < Ch?3, the estimate follows by writing

1€ + i@ ra(z, )l 222 = V& + 2[Irall e re,

using that ||r,|| < Ch~%/3 by Proposition 4.12 and the fact that &2 < 158V,
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2. For €2 4+ V > Ch*?, by adding the estimates
Re [(p(z,€) = N)e 5] = V(z) — Cohs, Re(p(w,€) — \) > €2 — &2 — Coh?.

one obtains

(4.30) (& +V)[raull < Cllull.
for h small enough, using that ® is a p-subsolution. "The result follows by writing
(&2 + V)lInall

1€ +id")ral| < C @+vyre:

We now turn to the estimate (4.28).

1. If |#| < ChY3, then |V'| < ChY/? since V'(z) ~ V"(0)z as & — 0. Thus the result follows
immediately from the estimate ||ry|| 2w, ) < Ch~?/® of Proposition 4.12 in this case.

2. If |x| > Ch'/3 then, since (by Assumption 2.1) (i) V(z) is quadratic at z = 0, (i) V(z) > 0
for x # 0 and (iii) V' is bounded below at infinity, there exists ¢ such that V(z) > ch??
for all z € R. Moreover, one has |[V'(z)|/V(z) < Ch~'/? for all z € R (since V')V ~ 127!
as x — 0). Thus, using again the estimate (4.30) above,

/ V()] —1/3 /42 -1/3
[Virall < V) V@)[[rall < 77 + V)il < Ch7H7,

concluding the proof. O
Proof of Proposition 4.13. By Corollary 4.19, 9°ry can be written in the form

J
85m: E fj'T)\'aN’j
j=1

where f; € So(L*(R4), L*(R4)) and ay; are N-atoms with N = |3] in the sense of Definition
4.15. Therefore by Proposition 4.20 and the first estimate in (4.18) in Proposition 4.12,

J
HT)\HZ(LQ(R+),L?£>2(R+) < Z HfjHX(L?OQ(R”)HT/\‘|$(L2(R+),L?§>2(R+))HaNJHi”(LQ(RH)
j=1
< Cmax |00 || oh™23h N3,
n<N
since ||fj||$(L?§>2(R+)) = || fill 2(z2(r, ). This concludes the proof. O

4.4. Proof of Proposition 3.10. By the quantization formulas of Proposition 4.10 the
composition formula, the continuity of # and the class estimates of Proposition 4.13, we can
write

(4.31) (Id —TT,,) = b 2BRA(LE — \) —ih' PK, + WP K,
where

Ry = Opqif(hz/grx\) , Kp= Oplﬁ]({(hwsﬁ),ph}) , Ky = Op}f(/ﬁh)
with

(4.32) (1n)(0,h0) € S1/3(Digy2, Lig2(Ry)) = Siy3(D, L*(R+))
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and where for any 3 € N?, there exists Cz and My such that
n 5/
1l 3,5 < O max [|0; 2]l
The last equality in (4.32) eliminates the dependence in £ from the spaces, and thus allows

us to apply the Calderén-Vaillancourt theorem (Theorem 4.7) to Opy (up). Namely, there
exists N > 0 such that

[ F2ully < C'max 102 @ el 22 s:)
where [[ul|72g py = Jp [u(z, )|} dz. Moreover, since

51/3(L2(R+), Lig2(R+)) C Sij3(L*(Ry), L*(R4))
holds with continuous inclusion, the Calderén-Vaillancourt theorem gives for some N > 0,

< 7 &/
I Rsll g < O mas |19

Using these estimates in (4.31) and the elliptic regularity result of Proposition B.3 leads to
[(1d —Th,0)¢ [l < € max (|07l (P BN = NI+ R ey + OB Ku)
< Cgl;a]g; 107 [l (2L = NI+ 1459 1+ B2 ¢l + ChY? || Ky

< Cmax 979" oo (h7*P[(L7 = NIl + 222 @]l + ChYP | Kyul))

since A\ = O(h?/?). Therefore, to conclude, it remains to show that there exists N > 0 such
that

(433) |l < C i |05 o5

To this end, we compute its symbol using Proposition 4.14:

{(W*3r\), pn} = W*3 (8,720epn — OeraOupn)
= —p?/3 (Uaxphmagph - Txagphm@a:ph + (T’Aaxﬂl,a + 3x7T1,a)a§ph)
= (Qh[ampfu T)\] + Qhaxﬂ-l,a + aﬂcﬂ'l,Oth)

where g, = (£419")(h?/3ry) € S1/3(L*(R4), L*(R4)) (since (h?/3r)) “gains” (£)?). Moreover,
[Oupn, 2] = (W20, (), 73] = [Osa(), (h*r2)] € S1y3(L*(Ry), L*(Ry)).

Therefore, {(h*3ry), pn} € S1/3(L*(Ry), L*(Ry)) and it is also straightforward to check that
for any 8 € N?, there exists Cs and Mp such that

(434) {021, pn) 1,5 < Gy e 1959

using Proposition 4.13. The estimate (4.33) follows from (4.34) and the Calderén-Vaillancourt

theorem, concluding the proof. [y
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5. SHARPNESS OF THEOREM 2.3

In this section, we show that Theorem 2.3 is sharp. More precisely we show that Theorem
2.3 does not hold for p = 0. In particular, under the same assumptions, one cannot obtain
a O(h*) localization scale for s < 1.

To show this, we produce a counter-example. Let « = 1 and let V € C*™(R) satisfy
Assumption 2.1 and furthermore V| _ 11)e = 1. Let ¢ the function obtained by setting u =0

in (2.4), ie.,

1 x
o= 7 /0 VV(s)ds

We prove that there exists R > 0 and hy > 0 small enough such that for every h € (0, hy),
there exists A € D(|z1]e™/3h?/3, Rh) and 1 € H? satisfying (£ — A\)¢ = 0 but e?/") ¢ H.
We construct ¢ as the following tensorized function:

w(%y) = f(x)uAi(y)v

where u;(y) is a Dirichlet eigenfunction of D2 + iy associated to |z]e™* (one can take

uai(y) = Ai(ye's + 21)) and f is an eigenfunction of (hD,)? + iV associated to a complex
number p € D(0, Rh); such a pair (f, u) exists for R large enough and h small enough, with
w furthermore satisfying Re () > 0, by [5, Proposition 3.6]. It is immediate by construction
that £ = (|z1]e™3h?/3 4 ). To show that e?@/hy) ¢ H, it suffices to show that the

“amplitude” a(z) := 2 f(x) does not belong to L*(R) (by the Fubini theorem, and

since |a(z)|* = |e"n" f(z)]%).
Indeed, suppose by contradiction that a € L*(R). The point is that a satisfies the differ-
ential equation

(5.1) ([hDy +i(1+4)¢]> +iV — p) a(z) =0

1

which, noticing that for z > 5, V' =1 and ¢'(x) = \/Li’ gives

—h2d"(z) + 26T hd (x) — Ma(z) =0 for z >

N | —

Therefore, there exist «, € C such that

—_

a(z) = ae®M 4 gef2r/h for x> o1
where 6; = €'1 4+ /fi and 6, = €'t — | /ii; from this, we deduce that the condition a € L*(R)
is only possible if « = g = 0.
In particular, a satisfies the differential equation (5.1) together with the conditions a(1) =
a’(1) = 0; therefore, by uniqueness of the solution to this initial value problem, it follows a
vanishes on R. This implies f also vanishes on R, a contradiction.
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APPENDIX A. PROOF OF LEMMA 3.5

1. Let u € H? and let € > 0. There exists a bounded subet Q2 C R x R, such that
/ |Aul?® + |yul® + |u|?* dzdy < e.
Qc

Let x € C*(R x R, ) satisfying y = 1 on © and such that Q= supp x is bounded. Then
|lu — xull32 < Cye where C, > 0 depends only on x.

2. Since Q is bounded, K := supg y is finite, and if we find ¢ € C*°(R x R} ) satisfying
¢|rxgoy = 0 and ||¢ — u|| p2rxr,) < 13—‘;{ with C independent of u, then we are done since

lw = x@lle < lu = xulle + [Ix(w = @)z < Cxe + (1 + K)|lu = ¢llr2@) < (Cy + Ce,

and the condition ¢|rx (o} = 0 ensures that xp € H2.

3. By density of C*(R xR, )N H?(R xR, ) in H*(R xR,), we can find p; € C*(RxR,)N
H?(R x R,) such that
€

1+ K

The remaining issue is that ¢ may not vanish on R x {0}. However, by continuity of the
trace operator v : H2(R x Ry) — H3?(R) (see [23, Lemma 3.35])

(A1) |lu — @1lla2@xry) <

eCy

1+ K
where Ciy = [|7]| 2(m2rxr,),m3/2r))- We now exploit the smallness of the trace yy; to
construct a small “correction” s such that ¢ + 9 vanishes on R x {0}.

4. Let ¢y := —¢; + w where w is the unique solution in H}(R x R, ) of the variational
problem

(A.2) lveillgsrmy = [17(e1 — W)l a2@xry) < Culler — ullpzexr,) <

/ Vw-Vv—l—wv:/ Vi - Vo+@v forall v e Hy(R x R,).
RXR+

RXR+

By standard elliptic regularity of the Dirichlet Laplacian, w € C®(R x R, )N H*(RxR,)
and thus ¢, also belongs to this space by linearity. Moreover, —Aw + w = —Ag; + @1,
thus Aps = 9. Hence, by [23, Theorem 4.18], there exists Cg; > 0 independent of u such
that

(A3)  le2llmz@sry) < Cen ([l02ll2@xry) + 172l m32) = Cen (ll02llz2@xry) + 171 1372)

since Yy = —7¢1.
5. We put ¢ := @1 +¢o. By what precedes, ¢ € C*(R x Ry)NH?*(R xRy) and ¢|rx (o} = 0.
Moreover, by (A.1), (A.2), (A.3) and the triangle inequality,
(1+C)e
1+ K
where C' does not depend on u. Finally, using Green’s theorem, (A.2) and (A.3)

dpa
lealismn < Meallges) = | Szl 0 (@,0)do

(Ad) lu—ollmz@xr,) < [[u— @1l m2@xr,) + Q2] H2@R, ) < + Canll 2]l 2R xR )

% ol + —Z5)
1+ K ©21| 1.2 1L K

< @yl 2wy lveerll 2wy <
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where C is independent of u. This implies that [|¢s|/r2&xr,) < 155 where C' is indepen-

1+
dent of u. Inserting this estimate in (A.4) concludes the proof.

APPENDIX B. ELLIPTIC REGULARITY ESTIMATES

Proposition B.1 (Basic elliptic estimate for £F). For all > 0, there exists C > 0 such
that the estimate

W2 (D |+ IVl + IV V@l + [(hDe) s < Ce™M L | + Cell9
holds for allh > 0, € € (0,1), ¢ € H?, and ® any pu-subsolution in the sense of Definition 3.1.

Proof. 1f @ is a p-subsolution, then the proof of [5, Proposition 2.2] shows that
Re (75200, 4) = B*P(IDyy | + Vyul?) + gnﬁww-

In particular, by Young’s inequality, for any ¢ € (0, 1),

(B.1) RAD I + Vg l) + IVV el < Ce™'| L2l + Cell |-

In turn, since
Re (L7, ¢) = [(hRDL)y[* — (@]
and since ¢ < 54V by assumption,
1

B2)  (BD)wl < —LIVVYIP +Re (520, 0) < Ce™ L2 0 + Cellb

by (B.1) and Young’s inequality. The proof is concluded by summing (B.1) and (B.2). O

Proposition B.2 (Elliptic regularity for the Airy operator). There ezists C' > 0 such that
for allu € D,

lyull 2@y + |1 Djull 2@,y < Cllullp.
Proof. Tt is sufficient to show that
(B.3) IDgull 2,y < llullp

Indeed, recalling the definition of the D norm from (3.7), one can then use the triangle
inequality to obtain the other estimate

lyull < |1 Dyull ey + 9 ull 2,y < Cllulip.

To show (B.3), we use the classical method of difference quotients of Nirenberg [25].
Namely, for v € L?*(R,) and h € R, denote Apu := W Recall that if u € H'(R,),
then Apu converges to Dyu in L? as h — 0. Given u € D, we write

(A u, Dzu) = lim (v, A_pApu) = lim (Apu, Apu)
h—0 h—0
(B.4) = }llir%(szfAhu, Apu) + ([, Aplu, Apu).
But on the one hand, [«/, Ay]u = [iy, ApJu = iu(- — h), so that
(B.5) ilzli%([%’ Aplu, Apu) = i(u, Dyu) 2w,
On the other hand

(B.6)  Re(/Ayu, Apu) = | Dy(Anu)llizw, ) = 120(Dyu)T2e, ) —n-o [ Dyull e, )-
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Thus, by (B.4)-(B.6), the Cauchy-Schwarz and the Young inequalities,
1D3ull? < © (Nulfa. + I1DyullFaqe, + |1 ulfe, )
and the conclusion follows since ||Dyu||%2(R+) = Re(u,u) < %(H,Q{uﬂig(ﬂh)jt||u||%2(R+))_ O

Proposition B.3 (Elliptic regularity for .£%). There exists C' > 0 such that for all ¢ € H?
and all h > 0,

1/2
_2
(B.7) (/R Ju(, -)II%dx) < C([¢ln + b= 511 L5 ).
Proof. We start by showing that

(B.8) lo()?¢ll < C (¢l + B35 L2 13)

where ¢ : R — R, is smooth and satisfies p(y) = /y for y € [1,+00); this immediately
implies the same estimate with (y)? replaced by y.

To this end, let y € C(R) be real-valued with xy = 1 near 0 and let ps(y) := x(0y)p(y)
and By the dominated convergence theorem,

(L, e(y)*v) = im (L, 950) = lim (L7 (0s(0)0), 25 ()v) + (47 s W)Y, 05 (w))
We observe that

Im (L7 05 (y), pst0) = B3 (@) 0s(y) 0, 05 (y)Y) = ch®3||ps(y) |3,

since « is bounded below. Moreover, since ¢’ is bounded, ||[Z2, ps|w| < CR¥3(||¢|% +
|1 Dybll3¢). Thus,

lim h*Plps ()13, < 1L los ()¢l + CR ([l + 11Dy ) e () 1

Using the basic elliptic estimate of Proposition B.1 with ¢ = h'/3 and using Young’s inequal-
ity, we deduce that

W3 o5 ()l < Ch=*PILLE I3, + W2 w13,

Sending d to 0, we obtain (B.8).
We obtain the estimate

(B.9) 1020w < € (Il +h 212200 1)

by the method of difference quotients as in the proof of Proposition B.2. We omit the detail,
since no new difficulty arises. Summing (B.8) and (B.9) and using the Fubini theorem

/R W, Yo, + D26, ) 2o, do < Ol + h2 L2 5)

which implies (B.7) by the definition of the D norm and the triangle inequality. U
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APPENDIX C. EXISTENCE OF EIGENVALUES OF .%}, CLOSE TO Al,a(o)hQ/ 3

In this paragraph, we prove the following result

Proposition C.1. There exists R > 0 and hg > 0 such that for all h € (0, hy), £ admits
at least one eigenvalue in the dist D()\LQ(O)h%, Rh).

Proof. We use the following three steps, which are shown individually in separate lemmas
below.

(i) We show that the spectrum of .%}, in a small disk D(0, ¢) consists exclusively of eigen-
values (Lemma C.2).
(ii) We show that if A € D(\;,(0)h%3, Rh) satisfies

dist(A — Ao (0)R*3,5,) > h
where S), = {eig(Zn —1Drh | n=1,2,... } is the spectrum of the complex harmonic
oscillator h>D? + ix?z?, with k = 1/ Y22, then A € p(.%,) and
1% =27 S R

see Lemma C.3. ,
(iii) By (ii), there exists a small circle C' := € (A, (0)h5 + €T rh, eh) in the resolvent set of
%,. Thus, the operator
1
P, = — — %) td
h 21 C(Z h) &
is well-defined. We then exhibit an explicit tensorized “quasimode” ) for which we
prove that Pyt # 0 (Lemma C.4). Thus P, # 0, which means that (z — %,)~! cannot
be holomorphic in a closed disk containing C'. In particular, the spectrum of %,
cannot be empty in the disk D(\; (0)h?3, Rh) and by (i), it follows that %, admits
an eigenvalue in this disk.

O

Lemma C.2. There exists ¢ > 0 and hy > 0 such that for all h € (0, hg), the spectrum of £,
in D(0,c) is discrete and consists only of eigenvalues of £,. Moreover, for all X € D(0,c¢),
%, — A is Fredholm of indez 0.

Proof. It can be shown by a standard argument that .&j, — z is Fredholm of index 0 for
z € D(0,c¢) with ¢ small enough (by adding a smooth, compactly supported perturbation

X equal to a positive constant on the set where V(z) +y < %) For z = —3, we

have Re (L, + ¢/2)v,¢) > £[|¢|]?, thus &, + £ is injective, hence an isomorphism; in
particular —§ € p(%}). Since z — &}, — z is holomorphic with respect to z, the Fredholm
analytic theorem (see, e.g., [10, Theorem C.9]) implies that the spectrum of .}, is discrete
and consists only of elements with finite algebraic multiplicity, hence eigenvalues (by [7,

Corollary 3.36)). O
Lemma C.3. If A € D(\ (0)h?/3, Rh) satisfies

dist(A — Ao (0)R*3,S,) > h
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where S, = {ei%(Zn—l)/@'h | n=1,2,... } 18 the spectrum of the complex harmonic oscillator
h2D? + irk2a?, with k = YO then A € p(L,) and

2
(G =N <h

Proof. We can use a particular case of Proposition 3.10 (applied with ® = 0) to get

(C.1) P3(|(Id = Ty o)ob|| < Ol = Aol + Chlw].
Moreover, using Corollary 3.8 (again with & = 0)
(C2) |(Zh = Mwovl] < Cll (L = Nell + Chi ]

We again observe (as in the proof of Proposition 3.9) that
(gh - )\>H1,a - [(th)Q + Vh,eff — Z]Hl,a

where Vj, o = iV + h*3(\o(7) — M1.(0)) and, here, z € D(0, Rh) satisfies dist(z,S;) > eh.
Thus, by [5, Corollary 3.10] (adapting the proof as explained in Remark 1.2 (ii) of that
reference) and using the Fubini theorem,

(C.3) 1(Zh = Mol = Ch||IL o]l
Combining equations (C.1)-(C.3), we deduce that
1(Zh = Ml = Chll¥].

Thus (£, — A) is injective, hence an isomorphism by Lemma C.2 and the conclusion follows.

O
Recall the operator P, introduced in step (iii) of the proof of Proposition C.1.
Lemma C.4. The operator Py, is not equal to 0.
Proof. Let 1 = uaiy(y) fn(x) where
Uniry (V) 1= Ai(e‘%a(O)lBy +2z), fulx)= p~/4eex®/h
where ¢ = ¢"/*k. The point is that
(D2 + ic(0)y)uniry = AMa(0)uany and [(RD,)? + ir’2’] fi, = €'5kh Sy,
Thus, using Taylor expansions of V' and « near x = 0, one can check that
(L — (b)) = O(R*P)[|y]),
where g1 (h) := Ay o(0)h?/® + e'i kh. Therefore,
I =100 = = [ (€= = ¢~ i) ) .t
|55z [ (=2t = i) dc (- iy
< CHR2 ) = Ch2 |y
In particular, P, # 0, concluding the proof. U
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APPENDIX D. POLLUTION BY THE AIRY OPERATOR

In this paragraph, we outlie the pollution phenomenon alluded to in Remark 2.4(iv).
Firstly, it is possible to obtain a weaker localization result than Theorem 2.3, namely, a
localization at scale O(h'/?), by elementary manipulations of the quadratic form. Indeed it

is not difficult to show that for A € D(Ay4(0)h3, Rh),
Re [e—i% <<e‘1>(r)/h2/3 (L — /\)e—é(x)/hz/R,) ¢7¢>} > c<(V . C’h2/3)¢,1/1>

where ¢ > 0 and C > 0 are independent of h, and ® is a smooth bounded function satisfying
®(z) > min(1,22). Here, the term Ch??3 is simply due to the fact that A = O(h%*?). This
leads to the Agmon estimate

2/3
e gl < Clly

for any eigenfunction ¢ associated to \. Since V(z) ~ 22 as x — 0, this gives an O(h'/3)
localization in the x variable.

To understand why this argument fails to obtain the optimal O(h!/2) localization scale, it
is instructive to consider an analogous situation involving a self-adjoint counterpart of %, —
namely, when we replace £}, by the operator

L= h2/3(D§ + a(z)y) + (hD,)* + V()

In this case, the variational argument above can be improved by exploiting the fact that, by
the min-max principle, one has (in the sense of quadratic forms)

2
Dy + a(z)y 2 pa()
where ji1 o(7) := a(x)?3|2|. Therefore, splitting A € D(j1.,(0)h?/3, Rh) as
A= a(@)h?P 4 (10,0(0) = pa(@)h*? + 2,

the action of .Z* — X is decoupled into an “Airy part” and an effective “Shcrodinger part”
via
Airy part>0 Schrédinger part
7\ 7\

L= A= 1P (D2 + a()y — i a(x)) + HD2 + Viea(z) — 2

where Vi, o (2) = V(2) + h?/3 (11a(0) — pa(2)), and, crucially, z € D(0, Rh). Thus, we are in
the situation of the proof of Proposition 3.9, but the difference is that this decoupling is not
restricted to the image of the adiabatic projection II; ,.

In contrast, in the complex setting, the “complex Airy part” A := D} +ia(z)y — Ayo(2)
does not have a sign. Worse still, there exists € > 0 such that

(D.1) {<A¢’§”> ‘ be 7—[2} 5 D(0,¢)
I e

i.e., the numerical range of A, contains a neighborhood of 0 (this is an immediate consequence
of Corollary D.2 below). This leaves little hope of improving the O(h'/3) localization result
outlined in point (i) above by limiting oneself to direct arguments on the quadratic form.

We now show the claim (D.1). As in §3.2, we denote by o/ := D; + iy the complex Airy
operator on the Hilbert space L*(R, ) with domain D defined by (3.2). The numerical range
of o7 is the subset of the complex plane defined by
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The smallest eigenvalue in magnitude of 7 is given by |z1|e’5; however, this value is not on
the boundary of W (7). To show this, we start by the following lemma, which is reminiscent
of the virial theorem.

Proposition D.1. Let u; be an L?*-normalized eigenfunction of the self-adjoint Airy operator
A= D; +y for its smallest eigenvalue |z1|. Then

1 |21
HDyulH%Q(RJr) = §<yU1,U1>L2(R+) ~ T3
Proof. Let a := ||Dyu1||%2(R+) and b := (yuy,u1)2r,). We have a + b = |z|. Moreover, for
all v > 0, consider u, := u1(yy). Then by homogeneity,
Fl) = AR o2y,
||U’YH%2(R+)

The min-max principle states that f attains a global minimum for v = 1. Thus f/(1) = 0,
that is, b = 2a. O

Corollary D.2. There exists € > 0 such that D(|z|e'5,¢) C W ().

Proof. By Lemma D.1 and by homogeneity, for all v > 0, W (&) contains the complex
number

o
Z(")/) = —< u'wu’» = |Z—12| + 2Z1|Z1| )
w2y 37 3

where u,(z) := uy(yx). Observing that

;T 2 ;T
% < Re(]z]e's) and &l < Im (|z1]e’s),
one can check that the triangle with vertices z(7), z(y™!) and 2(1) ‘contains |2;]e"™/* in its

interior for  large enough. Since W (&) is convex (by the Toeplitz-Haussdorff theorem
28, 17]), the conclusion follows. O
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