TD d’ Analyse complexe
(2025-2026)

Séance 1

Exercices 1, 3, 4, 8, 10, 13

Exercice 1. (Opérations sur les fonctions holomorphes)

Soit U un sous-ensemble ouvert de C.
1. Soient f, g : U — C deux fonctions holomorphes sur U. Démontrer que z — f(2) + g(z2) et z —~ f(2)g(z)
sont holomorphes sur U, et déterminer leur dérivée complexe.

2. On suppose que f : U — C est holomorphe et ne s’annule pas sur U. Montrer que z — 1/f(z) est
holomorphe sur U et déterminer sa dérivée complexe.

3. Soit f : U = Cetg:V — C deux fonctions holomorphes. On suppose que g(V') C U, de sorte que
la fonction z — f(g(z)) est bien définie sur U. Montrer qu’elle est holomorphe et déterminer sa dérivée
complexe.

On suit essentiellement la méme démonstration que dans le cas réel :

1. Les fonctions f+g et fg sont continues, il suffit donc de démontrer qu’elles sont dérivables au sens complexe
sur U. A cette fin, soit z € U. Il existe r > 0 tel que D,.(z) — le disque ouvert de C de centre z et de rayon r
— soit contenu dans U (puisque U est ouvert). Pour tout b € C\ {0} tel que |h| < 7, on a alors

fto)lzth) = (f+9)e) _ fe+h) = flz)  glzt+h)—g(2)

h h h

et, par hypothese sur f et g, cette quantité admet une limite pour h — 0 donnée par

e~ (o))
h—0 h

= f'(2) +4'(2).

La fonction (f 4+ g) admet donc une dérivée complexe en z, donnée par f/(z) + ¢'(z). Ainsi, f + g est
holomorphe sur U, de dérivée f' + g'.

Pour le produit, on peut écrire, (toujours en considérant h non nul tel que |h| < )

Hect Dol 1) = FEE) _ S =1y, gy 4 g0 +0 =002

= f'(2)9(2) + f(2)d'(2)

lorsque h — 0, et donc de méme, fg est holomorphe sur U de dérivée f'g + fg'.

2. Puisque f ne s’annule pas sur U, 1/f est continue. Soit z € U. De méme qu’a la question précédente, on

écrit
11 LN ek =[G 1 )
h ( ) h “FTeEnfE | fG)?

flz+h) f(2)

lorsque h — 0. Comme précédemment, on conclut que 1/ f est holomorphe sur U de dérivée — f'/ f2.



3. Soit z € V fixé et w := g(z) € U. On peut définir les fonction-restes

flwth)—f(w) g .
er(h) = i fl(w), sih#0
f 0 .
sinon

9G+h)—g(z) _ s :
e (h) = 7 g (z) sih#0
g 0 .
sinon

pour tout & € D,.(0) \ {0} ot » > 0 est suffisamment petit. On a alors limj,_,g e 7(h) = limj,—0e4(h) =0
par hypothése sur f et g. Il s’ensuit que I’on peut trouver 6 > 0 tel que pour tout i € Ds(0), le nombre

h(h) == h-(g'(2) + eq(h))
vérifie h(h) € D, (0). On peut alors écrire pour tout i € Dj(0),

Flg(z+h) = f(g(2)) = Fw + h(g'(2) + £4(h))) = f(w) = h(h) f'(w) + €4 (A(h))

~—_———
=h(h)
par définition de €4 et £ 7. Or, limy, o l~1(h) = 0etlimy_o @ = ¢'(z), d’ol, par composition des limites,
. f(g(z+h))—f(g(z)) BT B(h) / N\ gt /
;ILIL% b = }ngb Tf (w) +e5(h) = f'(w)g'(2).

La fonction f o g est donc holomorphe sur V, de dérivée (f' o g) - ¢'.
Exercice 3.

Soit U un domaine de C, c’est a dire un ouvert connexe non-vide, et soit f : U — C une fonction continue.

1. On suppose dans cette question que f est localement constante, ¢’est-a-dire que pour tout z € U, il existe
r > 0 tel que f soit constante sur D,.(z). Montrer que f est constante.

2. On suppose que, vue comme une fonction sur une partie de R?, f est différentiable en tout point de U.
Montrer que si % et % sont nulles sur U, alors f est constante sur U.

1. Méthode 1 : L’ouvert U étant connexe, il est connexe par arcs. Etant donnés deux points a et b de U, il existe
donc une fonction continue v : [0,1] — U telle que v(0) = a et y(1) = b. On peut alors considérer la
fonction continue g := Re(f o) : [0,1] — R; on va montrer qu’elle est constante.

Pour ce faire, fixons ¢y € (0,1). Par hypothése, il existe > 0 tel que f soit constante sur D, (v(to)). De
plus, comme ~ est continue, il existe 7 > 0 tel que v(¢') € D, (y(to)) pour tout t' € (ty — n,to + n). La
fonction g est donc constante sur (tg — 1, to + 17). En particulier, g est dérivable en ¢ et g’(t) = 0. On a donc
montré que g est continue sur [0, 1], dérivable sur (0, 1) de dérivée nulle. Donc g est bel et bien constante.

On montre de méme que h := Im(f o ) est constante. Ainsi, f(a) = g(0) +ih(0) = g(1) +ih(1) = f(b).
Comme a et b étaient arbitraires, on conclut que f est constante sur U.

Méthode 2 : Etant donné a € U, considérons ’ensemble U, := {z € U | f(z) = f(a)}.Ona U, # 0
puisque a € U,. De plus, U, est a la fois ouvert et fermé dans U. En effet,

(i) il est fermé, car c’est I’image réciproque du singleton {f(a)} — qui est un ensemble fermé — par la
fonction continue f,

(ii) il est ouvert, car pour tout point z € U,, il existe > 0 tel que f soit constante — et donc égale a a —
sur D,.(2). Autrement dit, D,.(z) C U,.

Il est donc nécessaire que U, soit U tout entier. Sinon, on aurait la décomposition U = U, U V ou U, et
V = U \ U, sont ouverts (V' est ouvert comme complémentaire du fermé U, dans U), non-vides (V est
non-vide puisque U, est supposé différent de U) et manifestement disjoints; or une telle décomposition est
impossible par définition puisque U est connexe.
2. Par hypohese, la fonction f est différentiable en tout point de U et sa différentielle est nulle puisque
of of



Soit z € Uetr > 0tel que D,.(z) C U, et soient a,b € D,.(z). Puisque D,.(z) est convexe, le segment [a, b]
est entierement contenu dans D,.(z). D’aprés le théoréme des accroissements finis,

£(8) = F(a)| < s [ @)]b—a] =0.

s

Comme a et b étaient arbitraires, f est constante sur D, (z). Elle est donc localement constante, donc
constante sur U puisque U est connexe.

Exercice 4.

Soit U un domaine de C et f une fonction holomorphe sur U. Montrer que les assertions suivantes sont équiva-
lentes.

—

. f est constante.

2. Re(/f) est constante.

3. Im(f) est constante.

4. |f] est constant.

5. f est holomorphe (on dit que f est anti-holomorphe).

11 suffit de démontrer les implications comme dans le “graphe” suivant :

©

Premierement, I’implication (1) == (4) est évidente.

Ensuite, on va obtenir les équivalences (1) <= (2) <= (3) (fleches rouges) a I’aide des équations
de Cauchy-Riemann. En effet, on a établi a 1’exercice précédent que Re(f) et Im(f) sont constantes sur U si et
seulement si leurs dérivées partielles sont nulles sur U. Mais en écrivant f = u + v avec u = Re(f), v = Im(f)
ona

ou  Ov
or oy’
ou dv
o~ o

et donc wu est constante si et seulement si v est constante. Ceci établit que (2) <= (3). On en déduit que
(2) = (1) : si Re(f) est constante, alors Im(f) aussi et donc f = Re(f) + «Im(f) aussi. L’implication
(1) = (2) étant évidente, ceci montre (1) <= (2) <= (3).

A ce stade, on voit quune fonction holomorphe f qui ne prend que des valeurs réelles est nécessaire-
ment constante : en effet, elle vérifie Im(f) = 0; en particulier, Im( f) est constante ! Mais d’apres I’'implication
(3) == (1), il en découle que f est elle-méme constante. Grice a cette propriété, on constate que si f est
holomorphe, alors Re(f) = f%f est holomorphe et a valeurs réelles, donc constante. Ceci montre (5) — (2)
(fleche orange).

Enfin, si |f| est constante, alors deux cas se présentent. Soit |f| est identiquement nulle, auquel cas f est
également nulle, donc holomorphe. Soit |f| prend une valeur constante et non-nulle M > 0, auquel cas f ne

s’annule pas sur U, et donc on peut écrire
- M?
F="F

qui est holomorphe d’aprés I’exercice 1. Ceci établit I'implication (4) = (5), la derniere “fleche verte” man-
quante pour compléter le graphe.



Exercice 8.

On note % L (8‘91 z(%) et % = % (8% + ia@) (avec I’identification habituelle de C a R?).

1. (a) Calculer 8f et af < pour les fonctions f : C — C suivantes

zZ Re( )

z — Im(2)

PN 6Re(z)Jrlm(z)

z -z,

Z =z,

z 2",

z—=zZ"

(b) Soit f : z — P(z) avec P € C[X]. Etablir les relations suivantes :

oP(z) oP(z) _, OP(z) 0P(z)
5z LG 5z LG R
2. (a) SoitU C Cunouvertetsoit f : U — C une fonction différentiable en tout point de U, en tant que fonc-

tion de deux variables réelles. Montrer que f est holomorphe si et seulement si f est identiquement
nulle.

(b) Montrer que dans ce cas, on a I’égalité af = f'(2).

3. On dit que f est antiholomorphe si elle vérifie 8f =

(a) Donner des exemples de fonctions antlholomorphes.
(b) Montrer qu’une fonction f : U — C est antiholomorphe si et seulement si la fonction z — f (Z) est
holomorphe sur U.

1. (@ e 20=01_

AL
A e -
o G L i =1 g = i =0
of _ g 9f
[ ] P 0, 9z 1
[ ]
a n 1 a n a n 1 ) ) )
322 =3 ( ;x —1 8Zy ) =3 (n(z+iy)" " —in(z +iy)" ' i) = n(z+iy)" " =n"h
0z" 1 [0z" oz" 1
% = <8ic +Z(;J) =3 (n(z+iy)" " +in(z+iy)" i) =0
e De méme qu’au point précédent on trouve
oz" oz"
i O, __ =z=n—1
0z 9z "

(b) Immédiat par linéarité, d’apres les quatre derniers points précédents.
2. (a) Supposons que f = u + v est holomorphe et calculons

of _1(ou ov\_1fou Ou_ .(0v Ov\| _1(0u_ dv\ i (0u 0Ov
9z 2\az "'9z) " 2oz oy or ay)| " 2\ox ay) T2\ay Tox)

Or chacun des deux termes au second membre est nul, en vertu des équations de Cauchy-Riemann.
Réciproquement, supposons que % = 0 (et donc, d’apres ce qui précede, les équations de Cauchy-
Riemann sont satisfaites). Soit z € U. Pour h = hy + iho suffisamment petit et non-nul, on a

flz+h)—f(z)  ulz+h)—u(z) +iv(z+h) —v(z)
h h h

ou ou v v
h hla hzaf-i- (h18+h28y)]+5(h)




en utilisant la différentiabilité de u et v, et ol ¢ est une fonction-reste vérifiant 0 = limy_,o (k). On
peut alors se servir des équations de Cauchy-Riemann pour ne garder que des dérivées partielles par
rapport a la variable x :

flz+h) - f(2)
h

ou dv ov Ou

==

1 | ou ) ov .
E %(hlﬁ’lhg)‘F%(lhl*hQ) +€(h)

=h =tih

Ainsi, f est C-différentiable et sa dérivée vérifie

e =2,

(b) On vient de voir que si f est holomorphe, alors f'(z) = 6—5 De plus, d’une part, par définition de la
dérivée partielle (premiere égalité), et d’autre part, par définition de la dérivabilité complexe (quatrieme

égalité),
Of o HEHt) = 1) et = JE) o SN FE)
Jdy  t—0 t t—0 ti h—0 h

Ainsi, f'(z) = % et f'(z) = —ig—’yc, donc on trouve

0 0
=5 (5 -i%)

en effectuant la “moyenne” des deux formules précédentes.
3. (a) Par exemple z — Z, et plus généralement z — P(Z) pour un polyndéme P (on I’a vu a la question

1(b)).
(b) Notons g : U — C la fonction définie par
9(2) = f(z) = f(z —iy).
D’apres cette définition, on a les relations

dg dg
9.9 = 5, (%) 2y

=5 (-3 =5 (L +ig) =5,

D’apres la question 2(b), la derni¢re quantité est nulle pour tout z € U si et seulement si f est holo-
morphe. Cette égalité montre donc que g est anti-holomorphe si et seulement si f est holomorphe.

of

e =5

=-(2);

et ainsi,

Exercice 10.

Pour une suite (a,, de nombres complexes, le rayon de convergence R de la série entiere » a,z" est défini
neN

par
R = sup {r >0 } la suite (a,7™)nen est bornée } € [0, +o0]

1. (a) Montrer I’égalité
1 n
— = limsup (|an|1/ ) = lim (sup |ak|1/k> .

(avec les conventions 1/0 = oo et 1/00 = 0)



QAn 41

an |°

(b) Sitous les (ay,,) sont non nuls & partir d’un certain rang, montrer qu’on a I'inégalité 1/R < lim sup

Donner un exemple ou I’inégalité est stricte.
2. Peut-on avoir R =07
3. Rappeler les démonstrations des propriétés fondamentales suivantes :
(a) Pour 0 < r < R, la série entiére converge normalement sur le disque fermé D(0, ).
(b) Si|z| > R, lasérie Y a,2" diverge grossierement (terme général non borné).
4. Montrer que les séries entieres Y a, 2" et Y na,z™ ont méme rayon de convergence.
5. (a) Déterminer le rayon de convergence des séries entieres > 2™, Y n=22" et Y. n~1z".
(b) Etudier la convergence des deux permieres séries sur le cercle de convergence.
(c) Etudier la convergence de la troisieme série aux deux points £1.
(d) Bonus. Etudier la convergence de la troisieme série sur le cercle de convergence (cette question néces-
site de connaitre la transformation d’ Abel).

Rappelons les propriétés suivantes de la lim sup (illustrées sur la Figure 1).

Proposition 1. Soit (u,)nen une suite de nombres réels et soit L := lim sup,,_, . t,. Alors
(i) Pour tout L > L, il n’existe qu’un nombre fini d’entiers n tels que w,, > L.
(ii) Pour tout L_ < L, il existe une infinité d’entiers n tels que u, > L_.

Unp
u3
X
L W
X
S uyQ _
L —
********* i i
L_ X Us Ug
Uo usg
X
n
uy
X

FIGURE 1 — Si la suite admet L pour limite supérieure, il y a au plus un nombre fini croix rouges et un nombre
infini de croix bleues.

Démonstration. La suite vy, 1= Supy,, uy est décroissante (puisque le supremum est pris sur des ensembles de
plus en plus petits), donc L = lim,,_,~ v,,. En particulier, si Ly > L, la suite (vy,),, finit par “passer sous L’ :
il existe n* tel que v,» < L, et donc pour tout n > n*,
Up < SUP Uk = Upr < Ly
k>n*
Ceci montre (i). D’autre part, si L_ < L, alors v,, > L > L_ pour tout entier n, et donc pour chaque n, on peut
trouver k > n tel que ug > L_, ce qui montre (ii). L]

1. (a) Notons M := limsup,,_, (|a,|*/™). On suppose que M < oo, et on fixe un réel positif r < -

(n’importe quel réel > 0 si M = 00). En notant m = %, on a donc m > M. La propriété (i) de la
Proposition 1 implique que 1’on peut trouver ng tel que

1/n

|an] <'m pourtoutn > ng.

Mais ceci équivaut a
lan|r™ <1 pourtoutn > ng



par définition de r et m. Ainsi, la suite (a,r™),, est bornée, donc R > r. Comme r < ﬁ était arbitraire,
on en déduit que

1 .

— < limsup(Jan|'/™).

R n—oo

On a supposé que M était fini, mais 1’inégalité précédente est toujours vérifiée dans le cas contraire.

Réciproquement, supposons que M > 0, et fixons un réel r > ﬁ On peut alors intercaler un réel 7’/
de sorte que 7 > 1’ > ﬁ En notant m = %, on a donc m < M. La propriété (ii) permet de trouver
n1 < ng < ...une suite infinie strictement croissante d’entiers telle que pour tout 7,

Mais ceci équivaut a

. T\ ,
|an,|r™ > (—) — 0o lorsque ¢ — oo,
T./
1

et donc la suite (a,,r™) n’est jamais bornée pour r > ﬁ On en déduit que R < 57,

i.e.,

1
— > limsup |a,|*/".
R n—oo
On a supposé que M > 0, mais 1’inégalité précédente est toujours vraie si M = 0.

An+41
An

(b) Soit M := limsup,,_,

. Si M = oo, I'inégalité est évidente. Sinon, fixons un réel positif

r < ﬁ arbitraire et posons m = %, de sorte que m > M. D’apres la propriété (i) de la Proposition 1,
il existe ng tel que

vn > ng, dnt1
A,
Ceci implique que la suite |u,| := a,r™ vérifie alors
1
[uni1] =7 i1 [un] = — Gnt1 |tr| < |un| pour tout n > ng.
m| ap

Elle est donc décroissante a partir d’un certain rang, donc bornée. Ainsi, R > r. Comme r < ﬁ était

arbitraire, on conclut que

an+1
an

1 < li
— 1m su
R= aoay

Pour voir que I’inégalité peut étre stricte, on peut considérer par exemple la suite a,, définie par

. 92k o 2k+1
asg =2 5 a2k 41 =3-2 + .

On a alors
al/m < (3.2m/n =3ln.2 52
lorsque n — oo, tandis que pour tout n pair,

3. 2n+1
ol 272 _ 6 > 2.
an, 2n

2. On peut avoir R = 0. C’est par exemple le cas si a,, = 2”2, puisque dans ce cas, a,l/" = 2" tend vers
I’infini.

. Soit 0 < r < R donné. Il existe r tel que 7 < r < R, et par définition de R, la suite (a,r"} ), est bornée.

Mais comme n
r
lan|r"™ = |an|rl (> ;
T+

oo oo r n
Z lan|r™ < max (lan|r?) Z <r+> < 00

n=0 n=0

il s’ensuit que

. ” . n
puisque = < 1. La série >, anz™ est donc normalement convergente sur D(0, 7).

D’autre part, si |z| > R, le terme général de la série > a, 2™ n’est pas borné par définition de R, donc la
série diverge grossierement.



4. La suite n'/™ converge vers 1 (puisque n'/™ = exp(In(n)/n) et In(n)/n — 0). Donc pour tout € > 0, il
existe ng tel que

5.

Vn > ng, nt/" <14¢

On en déduit que pour tout n > nyg

1/k 1/k

sup |kay|

< (1 +¢)sup |ag|
k>n k>n

et donc

lim sup |na, |*/™ = hm <sup|kan|1/k> <(1+¢) hm <sup |ak1/k> = limsup |a, |'/™.
0 \k>n

n—oo k>n T—00

Lautre inégalité est immédiate.

(@)
(b)
(©

(d

D’apres la question précédente, les trois séries entieres ont le méme rayon de convergence. La premiere
série entiere correspond a la suite constante a,, = 1, donc son rayon de convergence est 1.
La premiere série diverge grossierement sur le cercle de convergence, et la seconde converge y converge
absolument (d’apres le critere de Riemann).
Pour z = 1, la troisieéme série est célebrement divergente, tandis que pour z = —1, elle est convergente
(par le critere des séries alternées).
On va montrer que la troisiéme série converge pour tout z = 1 sur le cercle de convergence. Pour ce
faire, on utilise la “transformation d’Abel”, ou intégration par parties discrete. Notons % I’ opérateur
de “dérivée discrete” sur les suites :
ou
on

On a une version discréte du théoréme fondamental de 1’analyse

De plus, la dérivée discrete d’un produit est donnée par

O(uv dv ou
%(k’) = Uk+1Vk+1 — UKV = uk+l%(k> + Uk’%(k)

En “intégrant” de part et d’autres, on voit donc que

(k) = Ukg41 — Uk

\ 2

n — Um-

ou
UnVp — U U = E Uk+1 )+ ve— (k)
on
ou encore,
n—1 n—1
E Uk (U1 — Uk) = UpVp — U Vpy, — E (V41 — Vk) Ukt 1.
k=m k=m

On applique ceci avec m = 1, vy = % et, pour un 0 ¢ 277,

n—1

ind
w ,_Zeike_l_e
e T 1 — e
k=0

Observons que Uyp41 — Uy = e'? La formule d’ Abel nous donne donc

inf ik6

— : 1 —
kaz<k+1 >1(w“

499

(on a “dérivé” le terme rouge, k +— 1/k, et “intégré” le terme vert k — ¢*?. On y gagne car intégrer le
terme vert ne coflite pas cher (il reste borné en k& si § # 1), tandis que dériver le terme rouge nous fait
gagner une puissance de 1/k).

,_\




Le terme de droite admet une limite finie lorsque 7 — oo. En effet, "% /n — 0 et

i 1 7} 176”7'6
E+1 k) 1—e®

k=1

1
< - <
—|1—eza|;k(k+1) >

d’apres le critere de Riemann. Ceci montre que la suite des sommes partielles de Y n 12" est conver-
gente.

Exercice 13.

On définit, quand c’est possible, la fonction sinus par sin(z) = _ ., (épi)lp), 22t

1. Les propositions suivantes sont elles vraies ?
(a) La fonction sinus est bien définie sur C.
(b) Vz € C,sin(z) = 5=
(¢) Vz € C,sin(z) = § (e%).
(d) La fonction sinus est bornée sur C.
(e) Si z € R alors la fonction sinus est la fonction habituelle sur R.

(f) Il existe une fonction f holomorphe différente du sinus complexe, mais qui coincide avec le sinus réel
quand z € R (on admet que tout fonction holomorphe est analytique sur son domaine de définition).

2. Pour quelles valeurs de z € C a t-on sin(z) = 07?

3. Montrer que la fonction f définie par f(z) = sin (1 z) est holomorphe sur le disque ouvert D(0, 1). Quels
sont les zéros de f sur ce disque ? Est-ce en contradiction avec le principe de zéros isolés ?

1. (a) Vrai: la série vérifie

|sin(z)| < Z S Z B ol < oo
o= (2p+ 1)! k!
Rappel : soit kg > |z| + 1 un entier. Alors
E'=k(k —1)... ko(ko — 1)! > (ko — 1)!(|2] + 1)k ~FoF1

donc
o0

0 eF (J2] + 1)kt ERY
Zk S k=1 kZ:O Z+1) =%

(b) Vrai : en effet,

(iz)" — (—iz)"™ o1 (1 —=(=1)") 0 si n est pair
— L =T =
2i 2 (=1)P sin=2p+1.

et la formule s’en déduit par sommation.
(c) Faux. Par exemple, d’apres (b),

sin(i) = ——— € iR

tandis que Im(e’*) € R pour tout z.
(d) Faux. Par exemple, d’apres (b), on a pour tout réel 7,

r__ ,—r
|sin(ir)] = 1< =1 > L
et donc en particulier,

lim |sin(ir)| = oo.
r—=+oo
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(e) Vrai (trivialement si I’on part de la définition via la série entiere, ou d’apres (b) si ’on part de la
définition par les formules d’Euler).

(f) Vrai...
... mais FAUX si ’on demande que f soit définie sur un ouvert connexe. En effet, soit 2 C C un
ouvert connexe contenant R, et supposons que f : {2 — C est holomorphe et coincide avec le sinus
réel sur R. Alors la fonction holomorphe f — sin : 2 — C s’annule identiquement sur la droite réelle.
Or, R posseéde un point d’accumulation dans €2 (par exemple, le point O limite de la suite injective
27" € R C Q pour n € N), donc par le principe des zéros isolés, la fonction f — sin est nulle sur 2
tout entier

En revanche, s’il n’est pas demandé a ) d’étre connexe, il est facile de construire un exemple : on peut
par exemple considérer Q2 := Q; U Qs := {Im(z) < 1} U {Im(z) > 2} et f : @ — C définie par

) sin(z) size
f(z)'_{o siz e Q.

2. Pourtout z € C,
exp(z) =1 <= z € (2mi)Z.

Ainsi,
sin(z) =0 <= e =e ¥ = ¥ =0 < 2iz€ (2m)Z < z € 7L

La fonction sinus complexe n’a donc que les zéros réels déja connus.

3. Puisque 1 —z ne s’annule pas sur D = D(0, 1), la fonction z — /(1 — z) est holomorphe sur D (Exercice 1.
question 2), et donc f I’est également par composition (Exercice 1, question 3) puisque sin est holomorphe
sur C tout entier. Pour tout z € D(0,1),ona

f(2) =0 < T enl = LeZ = EIkeZ*:z=1—l.
1—=2 1—=2 k
La suite (zj)ren définie par z;, = 1 — % est une suite injective de zéros de f. De plus, elle converge dans
C vers la limite z, = 1. Le principe des zéros isolés assure que les zéros de f ne peuvent pas admettre un
point d’accumulation dans D (rappel : dans la démonstration, on introduit un disque centré en z., et inclus
dans le domaine (2, et on développe f en série entiere sur ce disque). Ici, il n’y a pas de probleéme car z, ¢ D
(voir la Figure 2).

Zoo

FIGURE 2 — Les zéros d’une fonction analytique non nulle sur un ouvert connexe €) peuvent tout a fait
s’accumuler au bord de 2.



