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Séance 1
Exercices 1, 3, 4, 8, 10, 13

Exercice 1. (Opérations sur les fonctions holomorphes)

Soit U un sous-ensemble ouvert de C.

1. Soient f, g : U → C deux fonctions holomorphes sur U . Démontrer que z 7→ f(z) + g(z) et z 7→ f(z)g(z)
sont holomorphes sur U , et déterminer leur dérivée complexe.

2. On suppose que f : U → C est holomorphe et ne s’annule pas sur U . Montrer que z 7→ 1/f(z) est
holomorphe sur U et déterminer sa dérivée complexe.

3. Soit f : U → C et g : V → C deux fonctions holomorphes. On suppose que g(V ) ⊂ U , de sorte que
la fonction z 7→ f(g(z)) est bien définie sur U . Montrer qu’elle est holomorphe et déterminer sa dérivée
complexe.

On suit essentiellement la même démonstration que dans le cas réel :

1. Les fonctions f+g et fg sont continues, il suffit donc de démontrer qu’elles sont dérivables au sens complexe
sur U . À cette fin, soit z ∈ U . Il existe r > 0 tel que Dr(z) – le disque ouvert de C de centre z et de rayon r
– soit contenu dans U (puisque U est ouvert). Pour tout h ∈ C \ {0} tel que |h| < r, on a alors

(f + g)(z + h)− (f + g)(z)

h
=

f(z + h)− f(z)

h
+

g(z + h)− g(z)

h

et, par hypothèse sur f et g, cette quantité admet une limite pour h → 0 donnée par

lim
h→0

(f + g)(z + h)− (f + g)(z)

h
= f ′(z) + g′(z).

La fonction (f + g) admet donc une dérivée complexe en z, donnée par f ′(z) + g′(z). Ainsi, f + g est
holomorphe sur U , de dérivée f ′ + g′.

Pour le produit, on peut écrire, (toujours en considérant h non nul tel que |h| < r)

f(z + h)g(z + h)− f(z)g(z)

h
=

f(z + h)− f(z)

h
g(z + h) + f(z)

g(z + h)− g(z)

h
→ f ′(z)g(z) + f(z)g′(z)

lorsque h → 0, et donc de même, fg est holomorphe sur U de dérivée f ′g + fg′.
2. Puisque f ne s’annule pas sur U , 1/f est continue. Soit z ∈ U . De même qu’à la question précédente, on

écrit
1

h

(
1

f(z + h)
− 1

f(z)

)
= −f(z + h)− f(z)

h
× 1

f(z + h)f(z)
→ − f ′(z)

f(z)2

lorsque h → 0. Comme précédemment, on conclut que 1/f est holomorphe sur U de dérivée −f ′/f2.
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3. Soit z ∈ V fixé et w := g(z) ∈ U . On peut définir les fonction-restes

εf (h) :=

{
f(w+h)−f(w)

h − f ′(w) , si h 6= 0

0 sinon

εg(h) :=

{
g(z+h)−g(z)

h − g′(z) si h 6= 0

0 sinon

pour tout h ∈ Dr(0) \ {0} où r > 0 est suffisamment petit. On a alors limh→0 εf (h) = limh→0 εg(h) = 0
par hypothèse sur f et g. Il s’ensuit que l’on peut trouver δ > 0 tel que pour tout h ∈ Dδ(0), le nombre

h̃(h) := h · (g′(z) + εg(h))

vérifie h̃(h) ∈ Dr(0). On peut alors écrire pour tout h ∈ Dδ(0),

f(g(z + h))− f(g(z)) = f(w + h(g′(z) + εg(h))︸ ︷︷ ︸
=h̃(h)

)− f(w) = h̃(h)f ′(w) + εf (h̃(h))

par définition de εg et εf . Or, limh→0 h̃(h) = 0 et limh→0
h̃(h)
h = g′(z), d’où, par composition des limites,

lim
h→0

f(g(z + h))− f(g(z))

h
= lim

h→0

h̃(h)

h
f ′(w) + εf (h̃) = f ′(w)g′(z).

La fonction f ◦ g est donc holomorphe sur V , de dérivée (f ′ ◦ g) · g′.

Exercice 3.

Soit U un domaine de C, c’est à dire un ouvert connexe non-vide, et soit f : U → C une fonction continue.

1. On suppose dans cette question que f est localement constante, c’est-à-dire que pour tout z ∈ U , il existe
r > 0 tel que f soit constante sur Dr(z). Montrer que f est constante.

2. On suppose que, vue comme une fonction sur une partie de R2, f est différentiable en tout point de U .
Montrer que si ∂f

∂x et ∂f
∂y sont nulles sur U , alors f est constante sur U .

1. Méthode 1 : L’ouvert U étant connexe, il est connexe par arcs. Etant donnés deux points a et b de U , il existe
donc une fonction continue γ : [0, 1] → U telle que γ(0) = a et γ(1) = b. On peut alors considérer la
fonction continue g := Re(f ◦ γ) : [0, 1] → R ; on va montrer qu’elle est constante.

Pour ce faire, fixons t0 ∈ (0, 1). Par hypothèse, il existe r > 0 tel que f soit constante sur Dr(γ(t0)). De
plus, comme γ est continue, il existe η > 0 tel que γ(t′) ∈ Dr(γ(t0)) pour tout t′ ∈ (t0 − η, t0 + η). La
fonction g est donc constante sur (t0 − η, t0 + η). En particulier, g est dérivable en t et g′(t) = 0. On a donc
montré que g est continue sur [0, 1], dérivable sur (0, 1) de dérivée nulle. Donc g est bel et bien constante.

On montre de même que h := Im(f ◦ γ) est constante. Ainsi, f(a) = g(0) + ih(0) = g(1) + ih(1) = f(b).
Comme a et b étaient arbitraires, on conclut que f est constante sur U .

Méthode 2 : Étant donné a ∈ U , considérons l’ensemble Ua := {z ∈ U | f(z) = f(a)}. On a Ua 6= ∅
puisque a ∈ Ua. De plus, Ua est à la fois ouvert et fermé dans U . En effet,

(i) il est fermé, car c’est l’image réciproque du singleton {f(a)} – qui est un ensemble fermé – par la
fonction continue f ,

(ii) il est ouvert, car pour tout point z ∈ Ua, il existe r > 0 tel que f soit constante – et donc égale à a –
sur Dr(z). Autrement dit, Dr(z) ⊂ Ua.

Il est donc nécessaire que Ua soit U tout entier. Sinon, on aurait la décomposition U = Ua ∪ V où Ua et
V := U \ Ua sont ouverts (V est ouvert comme complémentaire du fermé Ua dans U ), non-vides (V est
non-vide puisque Ua est supposé différent de U ) et manifestement disjoints ; or une telle décomposition est
impossible par définition puisque U est connexe.

2. Par hypohèse, la fonction f est différentiable en tout point de U et sa différentielle est nulle puisque

df(z)[hx, hy] =
∂f

∂x
hx +

∂f

∂y
hy = 0.
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Soit z ∈ U et r > 0 tel que Dr(z) ⊂ U , et soient a, b ∈ Dr(z). Puisque Dr(z) est convexe, le segment [a, b]
est entièrement contenu dans Dr(z). D’après le théorème des accroissements finis,

|f(b)− f(a)| ≤ max
x∈]a,b[

‖df(x)‖|b− a| = 0.

Comme a et b étaient arbitraires, f est constante sur Dr(z). Elle est donc localement constante, donc
constante sur U puisque U est connexe.

Exercice 4.

Soit U un domaine de C et f une fonction holomorphe sur U . Montrer que les assertions suivantes sont équiva-
lentes.

1. f est constante.
2. Re(f) est constante.
3. Im(f) est constante.
4. |f | est constant.
5. f̄ est holomorphe (on dit que f est anti-holomorphe).

Il suffit de démontrer les implications comme dans le “graphe” suivant :

3

1

2

4

5

Premièrement, l’implication (1) =⇒ (4) est évidente.

Ensuite, on va obtenir les équivalences (1) ⇐⇒ (2) ⇐⇒ (3) (flèches rouges) à l’aide des équations
de Cauchy-Riemann. En effet, on a établi à l’exercice précédent que Re(f) et Im(f) sont constantes sur U si et
seulement si leurs dérivées partielles sont nulles sur U . Mais en écrivant f = u+ iv avec u = Re(f), v = Im(f)
on a 

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

et donc u est constante si et seulement si v est constante. Ceci établit que (2) ⇐⇒ (3). On en déduit que
(2) =⇒ (1) : si Re(f) est constante, alors Im(f) aussi et donc f = Re(f) + iIm(f) aussi. L’implication
(1) =⇒ (2) étant évidente, ceci montre (1) ⇐⇒ (2) ⇐⇒ (3).

À ce stade, on voit qu’une fonction holomorphe f qui ne prend que des valeurs réelles est nécessaire-
ment constante : en effet, elle vérifie Im(f) = 0 ; en particulier, Im(f) est constante ! Mais d’après l’implication
(3) =⇒ (1), il en découle que f est elle-même constante. Grâce à cette propriété, on constate que si f est
holomorphe, alors Re(f) = f+f̄

2 est holomorphe et à valeurs réelles, donc constante. Ceci montre (5) =⇒ (2)
(flèche orange).

Enfin, si |f | est constante, alors deux cas se présentent. Soit |f | est identiquement nulle, auquel cas f̄ est
également nulle, donc holomorphe. Soit |f | prend une valeur constante et non-nulle M > 0, auquel cas f ne
s’annule pas sur U , et donc on peut écrire

f =
M2

f

qui est holomorphe d’après l’exercice 1. Ceci établit l’implication (4) =⇒ (5), la dernière “flèche verte” man-
quante pour compléter le graphe.
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Exercice 8.

On note ∂
∂z = 1

2

(
∂
∂x − i ∂

∂y

)
et ∂

∂z̄ = 1
2

(
∂
∂x + i ∂

∂y

)
(avec l’identification habituelle de C à R2).

1. (a) Calculer ∂f
∂z et ∂f

∂z̄ pour les fonctions f : C → C suivantes
• z 7→ Re(z)
• z 7→ Im(z)

• z 7→ eRe(z)+Im(z)

• z 7→ z,
• z 7→ z,
• z 7→ zn,
• z 7→ zn.

(b) Soit f : z → P (z) avec P ∈ C[X]. Établir les relations suivantes :

∂P (z)

∂z
= P ′(z),

∂P (z̄)

∂z̄
= P ′(z̄),

∂P (z)

∂z̄
=

∂P (z̄)

∂z
= 0.

2. (a) Soit U ⊂ C un ouvert et soit f : U → C une fonction différentiable en tout point de U , en tant que fonc-
tion de deux variables réelles. Montrer que f est holomorphe si et seulement si ∂f

∂z̄ est identiquement
nulle.

(b) Montrer que dans ce cas, on a l’égalité ∂f
∂z = f ′(z).

3. On dit que f est antiholomorphe si elle vérifie ∂f
∂z = 0.

(a) Donner des exemples de fonctions antiholomorphes.
(b) Montrer qu’une fonction f : U → C est antiholomorphe si et seulement si la fonction z 7→ f(z) est

holomorphe sur U .

1. (a) • ∂f
∂z = ∂f

∂z̄ = 1
2

• ∂f
∂z = −∂f

∂z̄ = − i
2

• ∂f
∂z = 1−i

2 f , ∂f
∂z̄ = 1+i

2 f .

• ∂f
∂z = ∂Re(z)

∂z + i∂Im(z)
∂z = 1

2 + i (−i)
2 = 1, ∂f

∂z̄ = 1
2 + i i2 = 0.

• ∂f
∂z = 0, ∂f

∂z̄ = 1.
•

∂zn

∂z
=

1

2

(
∂zn

∂x
− i

∂zn

∂y

)
=

1

2

(
n(x+ iy)n−1 − in(x+ iy)n−1 · i

)
= n(x+ iy)n−1 = nzn−1.

∂zn

∂z̄
=

1

2

(
∂zn

∂x
+ i

∂zn

∂y

)
=

1

2

(
n(x+ iy)n−1 + in(x+ iy)n−1 · i

)
= 0

• De même qu’au point précédent on trouve

∂z̄n

∂z
= 0 ,

∂z̄n

∂z̄
= nz̄n−1.

(b) Immédiat par linéarité, d’après les quatre derniers points précédents.
2. (a) Supposons que f = u+ iv est holomorphe et calculons

∂f

∂z̄
=

1

2

(
∂u

∂z̄
+ i

∂v

∂z̄

)
=

1

2

[
∂u

∂x
+ i

∂u

∂y
+ i

(
∂v

∂x
+ i

∂v

∂y

)]
=

1

2

(
∂u

∂x
− ∂v

∂y

)
+

i

2

(
∂u

∂y
+

∂v

∂x

)
.

Or chacun des deux termes au second membre est nul, en vertu des équations de Cauchy-Riemann.

Réciproquement, supposons que ∂f
∂z̄ = 0 (et donc, d’après ce qui précède, les équations de Cauchy-

Riemann sont satisfaites). Soit z ∈ U . Pour h = h1 + ih2 suffisamment petit et non-nul, on a

f(z + h)− f(z)

h
=

u(z + h)− u(z)

h
+ i

v(z + h)− v(z)

h

=
1

h

[
h1

∂u

∂x
+ h2

∂u

∂y
+ i

(
h1

∂v

∂x
+ h2

∂v

∂y

)]
+ ε(h)
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en utilisant la différentiabilité de u et v, et où ε est une fonction-reste vérifiant 0 = limh→0 ε(h). On
peut alors se servir des équations de Cauchy-Riemann pour ne garder que des dérivées partielles par
rapport à la variable x :

f(z + h)− f(z)

h
=

1

h

[
h1

∂u

∂x
− h2

∂v

∂x
+ i

(
h1

∂v

∂x
+ h2

∂u

∂x

)]
+ ε(h)

=
1

h

∂u

∂x
(h1 + ih2)︸ ︷︷ ︸

=h

+
∂v

∂x
(ih1 − h2)︸ ︷︷ ︸

=ih

+ ε(h)

=
∂u

∂x
+ i

∂v

∂x
+ ε(h)

=
∂f

∂x
+ ε(h).

Ainsi, f est C-différentiable et sa dérivée vérifie

f ′(z) =
∂f

∂x
(z).

(b) On vient de voir que si f est holomorphe, alors f ′(z) = ∂f
∂x . De plus, d’une part, par définition de la

dérivée partielle (première égalité), et d’autre part, par définition de la dérivabilité complexe (quatrième
égalité),

∂f

∂y
= lim

t→0

f(z + ti)− f(z)

t
= i lim

t→0

f(z + ti)− f(z)

ti
= i lim

h→0

f(z + h)− f(z)

h
= if ′(z).

Ainsi, f ′(z) = ∂f
∂x et f ′(z) = −i∂f∂y , donc on trouve

f ′(z) =
1

2

(
∂f

∂x
− i

∂f

∂y

)
en effectuant la “moyenne” des deux formules précédentes.

3. (a) Par exemple z 7→ z̄, et plus généralement z 7→ P (z) pour un polynôme P (on l’a vu à la question
1(b)).

(b) Notons g : U → C la fonction définie par

g(z) := f(z) = f(x− iy).

D’après cette définition, on a les relations

∂g

∂x
(z) =

∂f

∂x
(z̄) ,

∂g

∂y
(z) = −∂f

∂y
(z̄),

et ainsi,
∂g

∂z
(z) =

1

2

(
∂g

∂x
− i

∂g

∂y

)
(z) =

1

2

(
∂f

∂x
+ i

∂f

∂y

)
(z̄) =

∂f

∂z̄
(z̄).

D’après la question 2(b), la dernière quantité est nulle pour tout z ∈ U si et seulement si f est holo-
morphe. Cette égalité montre donc que g est anti-holomorphe si et seulement si f est holomorphe.

Exercice 10.

Pour une suite (an)n∈N de nombres complexes, le rayon de convergence R de la série entière
∑

anz
n est défini

par
R = sup

{
r ≥ 0

∣∣ la suite (anr
n)n∈N est bornée

}
∈ [0,+∞]

1. (a) Montrer l’égalité
1

R
= lim sup

n→∞

(
|an|1/n

)
:= lim

n→∞

(
sup
k≥n

|ak|1/k
)
.

(avec les conventions 1/0 = ∞ et 1/∞ = 0)
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(b) Si tous les (an) sont non nuls à partir d’un certain rang, montrer qu’on a l’inégalité 1/R ≤ lim sup
∣∣∣an+1

an

∣∣∣.
Donner un exemple où l’inégalité est stricte.

2. Peut-on avoir R = 0?
3. Rappeler les démonstrations des propriétés fondamentales suivantes :

(a) Pour 0 ≤ r < R, la série entière converge normalement sur le disque fermé D(0, r).
(b) Si|z| > R, la série

∑
anz

n diverge grossièrement (terme général non borné).
4. Montrer que les séries entières

∑
anz

n et
∑

nanz
n ont même rayon de convergence.

5. (a) Déterminer le rayon de convergence des séries entières
∑

zn,
∑

n−2zn et
∑

n−1zn.
(b) Etudier la convergence des deux permières séries sur le cercle de convergence.
(c) Etudier la convergence de la troisième série aux deux points ±1.
(d) Bonus. Etudier la convergence de la troisième série sur le cercle de convergence (cette question néces-

site de connaître la transformation d’Abel).

Rappelons les propriétés suivantes de la lim sup (illustrées sur la Figure 1).

Proposition 1. Soit (un)n∈N une suite de nombres réels et soit L := lim supn→∞ un. Alors
(i) Pour tout L+ > L, il n’existe qu’un nombre fini d’entiers n tels que un ≥ L+.

(ii) Pour tout L− < L, il existe une infinité d’entiers n tels que un > L−.

n

un

L

L+

L−

×
u0

×
u1

×
u2

×
u3

×
u4

×
u5

×
u6

×
u7

×
u8

×
u9

×
u10

FIGURE 1 – Si la suite admet L pour limite supérieure, il y a au plus un nombre fini croix rouges et un nombre
infini de croix bleues.

Démonstration. La suite vn := supk≥n uk est décroissante (puisque le supremum est pris sur des ensembles de
plus en plus petits), donc L = limn→∞ vn. En particulier, si L+ > L, la suite (vn)n finit par “passer sous L+’’ :
il existe n∗ tel que vn∗ < L+, et donc pour tout n ≥ n∗,

un ≤ sup
k≥n∗

uk = vn∗ < L+

Ceci montre (i). D’autre part, si L− < L, alors vn ≥ L > L− pour tout entier n, et donc pour chaque n, on peut
trouver k ≥ n tel que uk > L−, ce qui montre (ii).

1. (a) Notons M := lim supn→∞
(
|an|1/n

)
. On suppose que M < ∞, et on fixe un réel positif r < 1

M
(n’importe quel réel r > 0 si M = ∞). En notant m = 1

r , on a donc m > M . La propriété (i) de la
Proposition 1 implique que l’on peut trouver n0 tel que

|an|1/n ≤ m pour tout n ≥ n0.

Mais ceci équivaut à
|an|rn ≤ 1 pour tout n ≥ n0
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par définition de r et m. Ainsi, la suite (anrn)n est bornée, donc R ≥ r. Comme r < 1
M était arbitraire,

on en déduit que
1

R
≤ lim sup

n→∞
(|an|1/n).

On a supposé que M était fini, mais l’inégalité précédente est toujours vérifiée dans le cas contraire.

Réciproquement, supposons que M > 0, et fixons un réel r > 1
M . On peut alors intercaler un réel r′

de sorte que r > r′ > 1
M . En notant m = 1

r′ , on a donc m < M . La propriété (ii) permet de trouver
n1 < n2 < . . . une suite infinie strictement croissante d’entiers telle que pour tout i,

|ani
|1/ni > m.

Mais ceci équivaut à

|ani
|rni >

( r

r′

)ni

→ ∞ lorsque i → ∞,

et donc la suite (anr
n) n’est jamais bornée pour r > 1

M . On en déduit que R ≤ 1
M , i.e.,

1

R
≥ lim sup

n→∞
|an|1/n.

On a supposé que M > 0, mais l’inégalité précédente est toujours vraie si M = 0.

(b) Soit M := lim supn→∞

∣∣∣an+1

an

∣∣∣. Si M = ∞, l’inégalité est évidente. Sinon, fixons un réel positif

r < 1
M arbitraire et posons m = 1

r , de sorte que m > M . D’après la propriété (i) de la Proposition 1,
il existe n0 tel que

∀n ≥ n0 ,

∣∣∣∣an+1

an

∣∣∣∣ ≤ m

Ceci implique que la suite |un| := anr
n vérifie alors

|un+1| = r

∣∣∣∣an+1

an

∣∣∣∣ |un| =
1

m

∣∣∣∣an+1

an

∣∣∣∣ |un| ≤ |un| pour tout n ≥ n0.

Elle est donc décroissante à partir d’un certain rang, donc bornée. Ainsi, R ≥ r. Comme r < 1
M était

arbitraire, on conclut que
1

R
≤ lim sup

n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
Pour voir que l’inégalité peut être stricte, on peut considérer par exemple la suite an définie par

a2k := 22k , a2k+1 := 3 · 22k+1.

On a alors
a1/nn ≤ (3 · 2n)1/n = 31/n · 2 → 2

lorsque n → ∞, tandis que pour tout n pair,

an+1

an
=

3 · 2n+1

2n
= 6 > 2.

2. On peut avoir R = 0. C’est par exemple le cas si an = 2n
2

, puisque dans ce cas, a1/nn = 2n tend vers
l’infini.

3. Soit 0 ≤ r < R donné. Il existe r+ tel que r < r+ < R, et par définition de R, la suite (anr
n
+)n est bornée.

Mais comme

|an|rn = |an|rn+
(

r

r+

)n

,

il s’ensuit que
∞∑

n=0

|an|rn ≤ max
n∈N

(
|an|rn+

) ∞∑
n=0

(
r

r+

)n

< ∞

puisque r
r+

< 1. La série
∑

n anz
n est donc normalement convergente sur D(0, r).

D’autre part, si |z| > R, le terme général de la série
∑

anz
n n’est pas borné par définition de R, donc la

série diverge grossièrement.
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4. La suite n1/n converge vers 1 (puisque n1/n = exp(ln(n)/n) et ln(n)/n → 0). Donc pour tout ε > 0, il
existe n0 tel que

∀n ≥ n0 , n1/n ≤ 1 + ε

On en déduit que pour tout n ≥ n0

sup
k≥n

|kak|1/k ≤ (1 + ε) sup
k≥n

|ak|1/k

et donc

lim sup
n→∞

|nan|1/n = lim
n→∞

(
sup
k≥n

|kan|1/k
)

≤ (1 + ε) lim
n→∞

(
sup
k≥n

|ak|1/k
)

= lim sup
n→∞

|an|1/n.

L’autre inégalité est immédiate.
5. (a) D’après la question précédente, les trois séries entières ont le même rayon de convergence. La première

série entière correspond à la suite constante an ≡ 1, donc son rayon de convergence est 1.
(b) La première série diverge grossièrement sur le cercle de convergence, et la seconde converge y converge

absolument (d’après le critère de Riemann).
(c) Pour z = 1, la troisième série est célèbrement divergente, tandis que pour z = −1, elle est convergente

(par le critère des séries alternées).
(d) On va montrer que la troisième série converge pour tout z 6= 1 sur le cercle de convergence. Pour ce

faire, on utilise la “transformation d’Abel”, ou intégration par parties discrète. Notons δ
δn l’opérateur

de “dérivée discrète” sur les suites :

δu

δn
(k) := uk+1 − uk.

On a une version discrète du théorème fondamental de l’analyse

n−1∑
k=m

δu

δn
(k) = un − um.

De plus, la dérivée discrète d’un produit est donnée par

δ(uv)

δn
(k) = uk+1vk+1 − ukvk = uk+1

δv

δn
(k) + vk

δu

δn
(k).

En “intégrant” de part et d’autres, on voit donc que

unvn − umvm =

n−1∑
k=m

vk+1
δv

δn
(k) + vk

δu

δn
(k)

ou encore,
n−1∑
k=m

vk(uk+1 − uk) = unvn − umvm −
n−1∑
k=m

(vk+1 − vk)uk+1.

On applique ceci avec m = 1, vk = 1
k et, pour un θ /∈ 2πZ,

un :=

n−1∑
k=0

eikθ =
1− einθ

1− eiθ
.

Observons que un+1 − un = einθ. La formule d’Abel nous donne donc

n−1∑
k=1

1

k
eikθ =

einθ

n
− eiθ

1
−

n−1∑
k=1

(
1

k + 1
− 1

k

)
1− eikθ

1− eiθ

(on a “dérivé” le terme rouge, k 7→ 1/k, et “intégré” le terme vert k 7→ eikθ. On y gagne car intégrer le
terme vert ne coûte pas cher (il reste borné en k si θ 6= 1), tandis que dériver le terme rouge nous fait
gagner une puissance de 1/k).
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Le terme de droite admet une limite finie lorsque n → ∞. En effet, einθ/n → 0 et∣∣∣∣∣
∞∑
k=1

(
1

k + 1
− 1

k

)
1− einθ

1− eiθ

∣∣∣∣∣ ≤ 2

|1− eiθ|

∞∑
k=1

1

k(k + 1)
< ∞

d’après le critère de Riemann. Ceci montre que la suite des sommes partielles de
∑

n−1zn est conver-
gente.

Exercice 13.

On définit, quand c’est possible, la fonction sinus par sin(z) =
∑

p∈N
(−1)p

(2p+1)!z
2p+1.

1. Les propositions suivantes sont elles vraies ?

(a) La fonction sinus est bien définie sur C.
(b) ∀z ∈ C, sin(z) = eiz−e−iz

2i .
(c) ∀z ∈ C, sin(z) = =

(
eiz

)
.

(d) La fonction sinus est bornée sur C.
(e) Si z ∈ R alors la fonction sinus est la fonction habituelle sur R.
(f) Il existe une fonction f holomorphe différente du sinus complexe, mais qui coïncide avec le sinus réel

quand z ∈ R (on admet que tout fonction holomorphe est analytique sur son domaine de définition).

2. Pour quelles valeurs de z ∈ C a t-on sin(z) = 0?

3. Montrer que la fonction f définie par f(z) = sin
(

π
1−z

)
est holomorphe sur le disque ouvert D(0, 1). Quels

sont les zéros de f sur ce disque? Est-ce en contradiction avec le principe de zéros isolés?

1. (a) Vrai : la série vérifie

| sin(z)| ≤
∑
p∈N

|z|2p+1

(2p+ 1)!
≤

∑
k∈N

|z|k

k!
= e|z| < ∞.

Rappel : soit k0 > |z|+ 1 un entier. Alors

k! = k(k − 1) . . . k0(k0 − 1)! ≥ (k0 − 1)!(|z|+ 1)k−k0+1,

donc
∞∑
k=0

|z|k

k!
≤ (|z|+ 1)k0−1

(k0 − 1)!

∞∑
k′=0

(
|z|

|z|+ 1

)k

< ∞.

(b) Vrai : en effet,

(iz)n − (−iz)n

2i
= znin−1 (1− (−1)n)

2
=

{
0 si n est pair
(−1)p si n = 2p+ 1.

et la formule s’en déduit par sommation.
(c) Faux. Par exemple, d’après (b),

sin(i) = e−1 − e1

2i
∈ iR

tandis que Im(eiz) ∈ R pour tout z.
(d) Faux. Par exemple, d’après (b), on a pour tout réel r,

| sin(ir)| = |er − e−r|
2

,

et donc en particulier,
lim

r→±∞
| sin(ir)| = ∞.
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(e) Vrai (trivialement si l’on part de la définition via la série entière, ou d’après (b) si l’on part de la
définition par les formules d’Euler).

(f) Vrai...
... mais FAUX si l’on demande que f soit définie sur un ouvert connexe. En effet, soit Ω ⊂ C un
ouvert connexe contenant R, et supposons que f : Ω → C est holomorphe et coïncide avec le sinus
réel sur R. Alors la fonction holomorphe f − sin : Ω → C s’annule identiquement sur la droite réelle.
Or, R possède un point d’accumulation dans Ω (par exemple, le point 0 limite de la suite injective
2−n ∈ R ⊂ Ω pour n ∈ N), donc par le principe des zéros isolés, la fonction f − sin est nulle sur Ω
tout entier

En revanche, s’il n’est pas demandé à Ω d’être connexe, il est facile de construire un exemple : on peut
par exemple considérer Ω := Ω1 ∪ Ω2 := {Im(z) < 1} ∪ {Im(z) > 2} et f : Ω → C définie par

f(z) :=

{
sin(z) si z ∈ Ω1

0 si z ∈ Ω2.

2. Pour tout z ∈ C,
exp(z) = 1 ⇐⇒ z ∈ (2πi)Z.

Ainsi,
sin(z) = 0 ⇐⇒ eiz = e−iz ⇐⇒ e2iz = 0 ⇐⇒ 2iz ∈ (2πi)Z ⇐⇒ z ∈ πZ.

La fonction sinus complexe n’a donc que les zéros réels déjà connus.
3. Puisque 1−z ne s’annule pas sur D = D(0, 1), la fonction z 7→ π/(1−z) est holomorphe sur D (Exercice 1.

question 2), et donc f l’est également par composition (Exercice 1, question 3) puisque sin est holomorphe
sur C tout entier. Pour tout z ∈ D(0, 1), on a

f(z) = 0 ⇐⇒ π

1− z
∈ πZ ⇐⇒ 1

1− z
∈ Z ⇐⇒ ∃k ∈ Z∗ : z = 1− 1

k
.

La suite (zk)k∈N∗ définie par zk = 1 − 1
k est une suite injective de zéros de f . De plus, elle converge dans

C vers la limite z∞ = 1. Le principe des zéros isolés assure que les zéros de f ne peuvent pas admettre un
point d’accumulation dans D (rappel : dans la démonstration, on introduit un disque centré en z∞ et inclus
dans le domaine Ω, et on développe f en série entière sur ce disque). Ici, il n’y a pas de problème car z∞ /∈ D
(voir la Figure 2).

z1 z2z3 ... z∞

D

·

FIGURE 2 – Les zéros d’une fonction analytique non nulle sur un ouvert connexe Ω peuvent tout à fait
s’accumuler au bord de Ω.


