TD d’ Analyse complexe
(2025-2026)

Séance 2

Exercices 18, 20, 21, 14, 17, 9

Exercice 18.

Soit U C C un ouvert connexe, f : U — C une fonction analytique non identiquement nulle, et soit X C U un
compact de C. On note Ky = f~1({0}) N K I’ensemble des points d’annulation de f sur K. Montrer que K est
fini.

Solution 18

Si K est infini, on peut trouver une suite injective (z, )nen d’éléments de K. Mais comme L’ensemble K est
fermé (comme intersection de fermés) et borné (puisque K 1’est), il est compact donc (2, )nen admet une sous-
suite (yn)nen (elle aussi injective) convergente vers une limite ¢ € K. De plus, puisque Ky C U,ona l € U.
Cette limite est donc un point d’accumulation de K dans U, contradiciton avec le principe des zéros isolés.

Exercice 20.

Soit f : C — C une fonction analytique. On suppose que pour tout zy € C, il existe 79 € N tel que f("0)(zy) = 0.
Démontrer que f est un polynome.

Solution 20 -
On considere le compact K = D, et pour tout 7 € N, on note K, := (f(™)~1(0) N K I’ensemble des zéros de la
fonction analytique (") sur le compact K. Par hypothése, on a

E = UnED\IKn-

Il existe donc au moins un entier ng tel que K, soit infini (sinon, I’ensemble a droite de 1’égalité serait dénom-
brable). Par contraposée de 1’exercice précédent, on en déduit que f("0) est identiquement nulle, ce qui implique
que f est un polyndme de degré au plus ng — 1.

Exercice 21. (Logarithmes complexe)

Dans cet exercice, 2 C C désigne un ouvert connexe et ne contenant pas 0. On dit qu’une fonction continue
f:Q — C estun logarithme complexe sur € si elle vérifie

exp(f(z)) =z pourtout z € Q.

1. Démontrer que deux logartihmes complexes sur €2 different par un multiple entier de 2im.
2. On suppose que f est un logarithme complexe sur 2. Montrer que f est holomorphe et que pour tout z € ),

S . G _f(2)
Indication : on pourra par exemple calculer limy,_, =T

o] 9s . e e 1 e .
3. Réciproquement, on suppose qu’il existe une primitive holomorphe de 7 sur 2. Montrer qu’il existe un

logarithme complexe sur 2.



4. Soit I',. le lacet orientée décrivant le cercle de centre O et de rayon r parcouru dans le sens trigonométrique.

Calculer
dz

r, #
En déduire que si {2 contient un cercle centré en 0, alors il n’existe pas de logarithme complexe sur 2.
5. On note R_ I’ensemble des réels négatifs ou nuls et

C™=C\R_.

Montrer qu’il existe une fonction arg : C~ — |-, [ de classe C! (au sens de la différentiabilité sur R?)
telle que
z = |z|e’®8()  pourtout z € C.

6. Pour tout z € C_, on pose
Log(z) := In(|z|) + i arg(2).

Vérifier que Log est bien définie et fournit un logarithme complexe sur C~. Plus généralement, montrer que
pour tout réel 6y, il existe un logarithme complexe sur 1’ouvert

C\e®R_.

Solution 21 1. Soient f; et fy deux logarithmes complexes sur €2, et soit h := f1 — f5 leur différence. Alors h
est continue (puisque f; et fy le sont par hypothese). De plus,

exp(f1(2))
exp(f2(2))

Ainsi, h(2) C 2miZ, et comme h({2) est connexe (puisque c’est I'image de ’ensemble connexe € par la
fonction continue h), il existe k € Z tel que h(Q) = {2nik}.

2. Soitz € Qetr > 0tel que D,-(z) C Q. Soit w := f(z) et pour tout h € D,.(z), notons

e(h):= f(z+h) — f(2).

La continuité de f assure que limj_,o £(h) = 0. De plus, on £(h) # 0 pour tout h # 0, puisque

exp(h(z)) = exp(f1(2) — fa(2)) =

=1 pour toutz € .

h h
e(h) =0 = exp(e(h)) =1 <~ wzl — Py <~ h=0.
exp(f(2))
Ainsi, par composition des limites, et puisque exp est holomorphe sur C,
i ef(z+h) _ of(2) o ewte(h) _ ow i ewWte _ gw e
Bo0 f(z 1+ h) — f(z)  hoo e(h) = 5 -7

(comme f est un logarithme complexe sur €2). La limite ci-dessus étant non-nulle, on en déduit par passage
a I’inverse que

L fle+h)—fl2) .. flz+h)—f(2) ..
P L0 o s ey M L Ny s L

flz+h) - f(z)
3 :

Donc f est continue et dérivable au sens complexe en tout point z € 2, donc holomorphe, et sa dérivée est
donnée par z — %

3. Soit g une primitive holomorphe de % sur et soit zg € £2. Soit k € C tel que exp(k) = 2o (en écrivant z
sous forme polaire z = r¢*?, le complexe k := In(r) + if convient). On va montrer que

f(z) =9(z) —g(20) + k
est un logarithme complexe sur . A cette fin, considéron h : Q — C la fonction

exp(f(2))

z

h(z) =



Cette fonction est holomorphe (comme composition et quotient de fonctions holomorphes), et vérifie h(z) =
1 par construction. De plus,

L s = ZE L ep(2)) = i eplf(2)) =0

h'(z) =

Puisque 2 est connexe, h est donc constante, donc partout égale a 1 = h(z¢). Il s’ensuit que exp(f(2)) = 2
pour tout z € €.

. Soit v, : [0,27] — T, la paramétrisation de T',. définie par ,.(f) := re'®. On a alors

2
/ dz _ / %0040 _ o i o,
I, z 0 ’71"(9)

Il ne peut donc pas exister de primitive holomorphe de % sur €, car sinon on aurait, en notant F' une telle
primitive
dz
| % = FG0) = P (2m) = Flr) = F(r) =0
D’apres (la contraposée de) la question 2, il ne peut donc pas exister de logarithme complexe sur €.

. L’application

J 0, +oo[ x |—m, [ = C~, (r,0) = re®

est de classe C'!, bijective, et pour tout 7 > 0 et § € |-, 7, sa différentielle au point (r, #) est donnée par

160~ (o) ety )

dont le déterminant vaut r, qui est donc non-nul. La différentielle est donc inversible en tout point. D’apres le
théoréme d’inversion globale, la bijection réciproque .J~! est de classe C'. On remarque que si z = J(r, ),
alors r = |z|. Notons 7, la projection sur la seconde coordonnée, i.e., ma(r, 0) := 6. En posant

arg(z) := ma(J(2)) pourtout z € C~
(qui est de classe C'! sur C~ par composition) on a alors pour tout z € C~
2= J(J7H(2) = J(|z] arg(2)) = |ze 8.
. D’apres la question précédente, Log est continue sur C—, et pour tout z € C™,
exp(Log(2)) = exp(In(|2]) + i arg(z)) = [z|e! =) = z.
Soit f := 10y + Log o r, ot r est définie par
r:C\eR_ = C™, 2z e W0z
La fonction f est bien définie et continue sur C \ ¢®R_ par composition de fonctions continues, et vérifie
exp(f(z)) = e'Peloer(Z) = ¢ifop (1) = 0000, = 5

C’est donc un logarithme sur C \ e?%R_.

Exercice 14.

Soient P, € C[X] deux polyndmes. On note Zg = Q~'({0}) I’ensemble des racines de @), que I’on suppose
non-vide. Soit 2 := C\ Zg et f : Q© — C la fonction définie par

1. Démontrer que f est holomorphe sur €2 et qu’en chaque point zy € €2, elle admet un développement en série

entiere dont le rayon de convergence R(zy) vérifie

R(z) > min |z — z.
(0) 2 min |2 = 20|



2. Démontrer que si

PHO)NQ 1 0)=0

alors I’inégalité précédente est une égalité, i.e.,

R(z0) = zré“z% |z — zo| pour tout zg € Q.

Solution 14 1. La fonction f est holomorphe sur {2 comme quotient, puisque () ne s’annule jamais sur €2 (par
construction). Quitte a appliquer une translation, on peut supposer que zo = 0 (et donc 0 ¢ Zg). De plus,
en utilisant la décomposition en élément simples des fractions rationnelles sur C, on peut écrire f comme la
somme d’un polyndme et d’une combinaison linéaire a coefficients complexes de fonctions de la forme

2= (z—w)™P, weZ, peN\{0}.

Pour p = 1, la fonction (z — w) ™! admet le développement en série entiere en 0

o0 n

1 1 Z
— -1 —_ e — . —_— = J—
(Z w) w 1-— Z/’LU Z wn—‘rl7

n=0
dont le rayon de convergence vaut |w|. Par dérivation terme a terme, la fonction

(71)p+1 dr

_ fy Z— P
(z-w) =

(z —w)™!
admet elle aussi un développement en série entiere de méme rayon de convergence |w|. Ainsi par linéarité,
Jf admet un développement en série enti¢re en 0 de rayon de convergence au moins min,¢ 7, [w|.

2. Notons
g anz"
n>0

le développement en série entiere de f en O et supposons par 1’absurde que son rayon de convergence R
vérifie R > r := minyez, |w|. Alors d’une part (i) : la fonction g : D(0, R) définie par

est continue sur D(0, ) (la série converge normalement sur cet ensemble puisque r < R), donc bornée sur
D(0,r). Mais d’autre part (i) : g coincide avec f sur D(0,r) par définition des coefficients (a,, ). Or, il
existe w* € Zg tel que |w*| = «; et puisque P(w*) # 0 par hypothese, les opérations habituelles sur les
limites assurent que
P *
i [f(z)] = — )

|z|<a,z—w* n lm, = |Q(Z)|

= 400.

En particulier, g n’est pas bornée sur D(0, ), contredisant (i).

Exercice 17. 1. Discuter ’existence et I’unicité d’une fonction holomorphe f : D — C vérifiant, pour tout
entier n > 2, les égalités :

@ f(3)=1-1.
® F() =f(-3)=4
© f(3) =t
@ f(3) =7
2. Méme question pour une fonction holomorphe h : D(1,1) — C, vérifiant pour tout n > 1 les égalités :
@ h(2)=0,

® A (L) = &



Solution 17 1. (a) Une telle fonction existe : z — 1 — z. D autre part, comme D est connexe, et comme 0 € D
est un point d’accumulation de 1’ensemble

E:{i‘new\{o,l}}cﬂ),

le principe des zéros isolés assure que deux fonctions f et g holomorphes sur D et coincidant sur
sont nécessairement égales. En effet, I’ensemble zéros de la différence h = f — g admet un point
d’accumulation dans D, donc h est identiquement nulle. Ceci montre que z — 1 — z est 'unique
fonction holomorphe sur D vérifiant les égalités requises.

(b) Il n’existe aucune fonction holomorphe vérifiant cela. En effet, supposons par ’absurde que f est une
fonction holomorphe vérifiant ces égalités. En ne considérant que les entiers n positifs, on constate en
particulier que f coincide avec la fonction holomorphe z — z sur ’ensemble F défini ci-dessus. Par
le méme raisonnement que dans la questino précédente, ceci entraine donc que

f(z) =2

et ainsi, f(—1/2) = —1/2. Or f(—1/2) = 1/2 par hypothése (pour n = —2) : contradiction.

(c) En raisonnement comme au point (a), on trouve que I’'unique fonction f satisfaisant ces égalités est

1

2 1

(d) Aucune telle fonction n’existe : on peut le voir en utilisant le fait que 7 — +/r n’est pas dérivable en
r=0.
En effet, supposons par 1’absurde qu’une telle fonction f existe. Comme f est holomorphe, elle est
continue en 0 donc, par la caractérisation séquentielle de la continuité,

1 1
0=t (1) =
D’autre part, f est dérivable au sens complexe en 0, elle doit donc vérifier

fO+1/n) = f(0)

)

7(0) = lim

n—o0o 1 / n
en particulier la limite ci-dessus doit exister et &tre finie. Mais ceci est incompatible avec les hypotheses

puisque
10+ym=10) _,(
1/n

1
——0) = ,
vn > Vi
qui diverge lorsque n — 0o
2. (a) Il'y a existence mais pas unicité : les fonctions

hi(z) =0 et ha(z) =sin (g)
sont distinctes et vérifient toutes les égalités (encore une fois, nous voyons que les zéros d’une fonction
holomorphe non nulle peuvent s’accumuler au bord de son domaine de définition sans contredire le
principe des zéros isolés).

(b) Il ne peut pas y avoir unicité, puisque pour toute fonction h vérifiant les conditions, la fonction h + ho
(ot ho(z) = sin(m/z) comme ci-dessus) est distincte de h et vérifie toujours les conditions. Pour
I’existence, puisque D(1,1) C C, la détermination principale du logarithme, z — Log(z) fournit
un logarithme complexe sur D(1, 1), et la fonction f(z) := exp (3Log(z)), qui est holomorphe par
composition, vérifie

F(1/n) = exp (;ln(l/n)) _ %

Exercice 9. (Fonction harmoniques et fonctions holomorphes)

Dans cet exercice, ) C R? désigne un domaine (un ouvert connexe non-vide) et v : 2 — R une fonction de classe
C?. Le Laplacien de u, que 1’on note Au, est la fonction définie sur 2 par

Pu P

Au = — .
b 8x2+8y2



Pour une fonction f a valeurs complexes, cette définition est étendue par linéarité : Af := ARe(f) + iAIm(f).
On dit que f est harmonique si Af = 0 sur . Dans cet exercice, on admet toute fonction holomorphe est de
classe C? (au sens de la différentiabilité sur R?) sur son ouvert de définition.

1. Soit f : Q — C une fonction holomorphe. Vérifier que A f = 4%22 = 4%.

2. En déduire que si f : 2 — C est holomorphe, alors sa partie réelle et sa partie imaginaire sont harmoniques.

3. Réciproquement, démontrer que toute fonction harmonique réelle u est localement la partie réelle d’une
fonction holomorphe ; autrement dit, que pour tout z € 2, il existe » > 0 et une fonction holomorphe
f : Dy(2) — Ctelle que u coincide avec Re(f) sur D,.(z). Indication raisonner par analyse syntheése.

4. On se propose maintenant de démontrer que le résultat précédent n’est pas vérifié “globalement”. A cette
fin, on considere le domaine 2 = C \ {0} et w : 2 — R la fonction définie par

u(z,y) = In(v/22 + y?2).

(a) Vérifier que u est harmonique.
(b) Démontrer que si une fonction holomorphe f : Q — C vérifie Re(f) = w, alors

Re (f’(z) - 1) =0.

z

1

(¢) En déduire que si une telle fonction existe, la fonction z — - admet une primitive holomorphe sur

C\ {0}. Conclure.

Solution 9 1. D’apres le résultat admis et le théoreme d’interversion des dérivées partielles de Schwarz, les
opérateurs % et a% commutent sur I’espace des fonctions holomorphes. On a donc, pour toute fonction f
holomorphe

ﬁg _22 _ 1 i_lg g_,_lﬁ f_l 872_2'2872 f_lAf
020z  0z0z"  4\ox oy)\ox oy) 4 \0ax2 oy2)’ 4"
2. Si f est holomorphe, alors % = 0, donc d’apres la question précédente, A f = 0.
3. Soient zg € Q etr > 0 tel que D,-(20) C . 1l suffit de montrer qu’il existe une fonction holomorphe f telle
que u = Re(f) sur D,(2). Quitte & appliquer une translation et une dilatation, on peut supposer que zy = 0

et r = 1. Supposons (analyse) qu’une telle fonction f existe, et écrivons la sous la forme f = u + v ou v
est de classe C? et a valeurs réelles. Pour tout z = z + iy € D,ona

v(z,y) = v(0,0) + (v(z,0) = v(0,0)) + (v(z,y) — v(x,0))

* v Y ov
= u(0,0)+/0 %(t,o)dt+/0 iy(m,t)dt.

Si f est holomorphe, elle doit vérifier les équations de Cauchy-Riemann, ce qui permettrait d’exprimer les
dérivées partielles ci-dessus en fonction de u. Ceci nous conduit donc (synthese) a considérer f := u + iv
ol

* ou Y ou
v(z,y) = —/0 8—y(t,0) dt+/0 %(m,t) dt.

11 suffit de vérifier que les équations de Cauchy-Riemann sont satisfaites. Or, d’apres le théoreme fondamen-

tal de I’analyse, on a d’une part
v (2,y) = Ju (2.9)
ay ) y - 81: ) y )

et d’autre part, par dérivation sous le signe intégral (possible car u est de classe C?)

ov ou Y 9%
%(10731)——@(1770)4' ; @(%t)dt
Yy 92
— —Z—Z(aa ) — ; %(%ﬂ dt (car u est harmonique)
ou ou Y
= —— ,%‘7 - fL‘7t
3y( ) L‘?y( )}0
Ju

|
|
(o5
<
B
@
N~—



4.

(a)

(b)

(©)

(d)

On trouve
0%u B 1 222 0%u B 1 29
ox2 x2 +y2 (a;Q —|—y2) ’ 8y2 T2 +y2 (xz —|—y2)2
2 2
et donc Au = inyz -2 (;2_:_,;/2)2 =0.
Soit f : © — C holomorphe telle que Re(f) = w. Ennotant f = u+ v (ot v = Im(f)) on a pour tout

e , af ou Ov
P2 = 52 = Sha) +igo ()

En particulier, Re(f'(2)) = 2%. Mais

ou, . & rT—iy\ zZ o\ 1
7= i e () e (i) =% (2),

Re (1) 2) =0,

d’ou
z

On sait qu’une fonction holomorphe de partie réelle constante est constante (rappel : on utilise les
équations de Cauchy-Riemann, voir le TD1). On en déduit qu’il existe C' € C telle que

1

z

f(2) +C.
La fonction f(z) — C'z fournit alors une primitive holomorphe de z +— + sur Q.

On vient de voir que si une telle fonction f existait, alors il existerait une primitive holomorphe de %
sur C \ {0}, ce qui contredirait I’exercice 21 (questions 2 et 4) puisque cet ensemble contient le cercle
unité.



