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Séance 2
Exercices 18, 20, 21, 14, 17, 9

Exercice 18.

Soit U ⊂ C un ouvert connexe, f : U → C une fonction analytique non identiquement nulle, et soit K ⊂ U un
compact de C. On note K0 = f−1({0}) ∩K l’ensemble des points d’annulation de f sur K. Montrer que K0 est
fini.

Solution 18
Si K0 est infini, on peut trouver une suite injective (zn)n∈N d’éléments de K0. Mais comme L’ensemble K0 est
fermé (comme intersection de fermés) et borné (puisque K l’est), il est compact donc (zn)n∈N admet une sous-
suite (yn)n∈N (elle aussi injective) convergente vers une limite ℓ ∈ K0. De plus, puisque K0 ⊂ U , on a ℓ ∈ U .
Cette limite est donc un point d’accumulation de K0 dans U , contradiciton avec le principe des zéros isolés.

Exercice 20.

Soit f : C → C une fonction analytique. On suppose que pour tout z0 ∈ C, il existe n0 ∈ N tel que f (n0)(z0) = 0.
Démontrer que f est un polynôme.

Solution 20
On considère le compact K = D, et pour tout n ∈ N, on note Kn := (f (n))−1(0) ∩K l’ensemble des zéros de la
fonction analytique f (n) sur le compact K. Par hypothèse, on a

D = ∪n∈NKn.

Il existe donc au moins un entier n0 tel que Kn0
soit infini (sinon, l’ensemble à droite de l’égalité serait dénom-

brable). Par contraposée de l’exercice précédent, on en déduit que f (n0) est identiquement nulle, ce qui implique
que f est un polynôme de degré au plus n0 − 1.

Exercice 21. (Logarithmes complexe)

Dans cet exercice, Ω ⊂ C désigne un ouvert connexe et ne contenant pas 0. On dit qu’une fonction continue
f : Ω → C est un logarithme complexe sur Ω si elle vérifie

exp(f(z)) = z pour tout z ∈ Ω.

1. Démontrer que deux logartihmes complexes sur Ω diffèrent par un multiple entier de 2iπ.
2. On suppose que f est un logarithme complexe sur Ω. Montrer que f est holomorphe et que pour tout z ∈ Ω,

f ′(z) =
1

z

Indication : on pourra par exemple calculer limh→0
ef(z+h)−ef(z)

f(z+h)−f(z) .

3. Réciproquement, on suppose qu’il existe une primitive holomorphe de 1
z sur Ω. Montrer qu’il existe un

logarithme complexe sur Ω.
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4. Soit Γr le lacet orientée décrivant le cercle de centre 0 et de rayon r parcouru dans le sens trigonométrique.
Calculer ˆ

Γr

dz

z
.

En déduire que si Ω contient un cercle centré en 0, alors il n’existe pas de logarithme complexe sur Ω.
5. On note R− l’ensemble des réels négatifs ou nuls et

C− := C \ R−.

Montrer qu’il existe une fonction arg : C− → ]−π, π[ de classe C1 (au sens de la différentiabilité sur R2)
telle que

z = |z|ei arg(z) pour tout z ∈ C−.

6. Pour tout z ∈ C−, on pose
Log(z) := ln(|z|) + i arg(z).

Vérifier que Log est bien définie et fournit un logarithme complexe sur C−. Plus généralement, montrer que
pour tout réel θ0, il existe un logarithme complexe sur l’ouvert

C \ eiθ0R−.

Solution 21 1. Soient f1 et f2 deux logarithmes complexes sur Ω, et soit h := f1 − f2 leur différence. Alors h
est continue (puisque f1 et f2 le sont par hypothèse). De plus,

exp(h(z)) = exp(f1(z)− f2(z)) =
exp(f1(z))
exp(f2(z))

= 1 pour tout z ∈ Ω.

Ainsi, h(Ω) ⊂ 2πiZ, et comme h(Ω) est connexe (puisque c’est l’image de l’ensemble connexe Ω par la
fonction continue h), il existe k ∈ Z tel que h(Ω) = {2πik}.

2. Soit z ∈ Ω et r > 0 tel que Dr(z) ⊂ Ω. Soit w := f(z) et pour tout h ∈ Dr(z), notons

ε(h) := f(z + h)− f(z).

La continuité de f assure que limh→0 ε(h) = 0. De plus, on ε(h) 6= 0 pour tout h 6= 0, puisque

ε(h) = 0 =⇒ exp(ε(h)) = 1 ⇐⇒ exp(f(z + h))

exp(f(z)) = 1 ⇐⇒ z + h

z
= 1 ⇐⇒ h = 0.

Ainsi, par composition des limites, et puisque exp est holomorphe sur C,

lim
h→0

ef(z+h) − ef(z)

f(z + h)− f(z)
= lim

h→0

ew+ε(h) − ew

ε(h)
= lim

ε→0

ew+ε − ew

ε
= ew = z

(comme f est un logarithme complexe sur Ω). La limite ci-dessus étant non-nulle, on en déduit par passage
à l’inverse que

1

z
= lim

h→0

f(z + h)− f(z)

ef(z+h) − ef(z)
= lim

h→0

f(z + h)− f(z)

z + h− z
= lim

h→0

f(z + h)− f(z)

h
.

Donc f est continue et dérivable au sens complexe en tout point z ∈ Ω, donc holomorphe, et sa dérivée est
donnée par z 7→ 1

z .
3. Soit g une primitive holomorphe de 1

z sur Ω et soit z0 ∈ Ω. Soit k ∈ C tel que exp(k) = z0 (en écrivant z0
sous forme polaire z = reiθ, le complexe k := ln(r) + iθ convient). On va montrer que

f(z) := g(z)− g(z0) + k

est un logarithme complexe sur Ω. À cette fin, considéron h : Ω → C la fonction

h(z) =
exp(f(z))

z
.
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Cette fonction est holomorphe (comme composition et quotient de fonctions holomorphes), et vérifie h(z0) =
1 par construction. De plus,

h′(z) =
zf ′(z)− 1

z2
exp(f(z)) = zg′(z)− 1

z2
exp(f(z)) =

z 1
z − 1

z2
exp(f(z)) = 0.

Puisque Ω est connexe, h est donc constante, donc partout égale à 1 = h(z0). Il s’ensuit que exp(f(z)) = z
pour tout z ∈ Ω.

4. Soit γr : [0, 2π] → Γr la paramétrisation de Γr définie par γr(θ) := reiθ. On a alors
ˆ
Γr

dz

z
=

ˆ 2π

0

γ′
r(θ)dθ

γr(θ)
= 2πi 6= 0.

Il ne peut donc pas exister de primitive holomorphe de 1
z sur Ω, car sinon on aurait, en notant F une telle

primitive ˆ
Γr

dz

z
= F (γr(0))− F (γr(2π)) = F (r)− F (r) = 0.

D’après (la contraposée de) la question 2, il ne peut donc pas exister de logarithme complexe sur Ω.
5. L’application

J : ]0,+∞[× ]−π, π[ → C− , (r, θ) 7→ reiθ

est de classe C1, bijective, et pour tout r > 0 et θ ∈ ]−π, π[, sa différentielle au point (r, θ) est donnée par

dJ(r, θ) =

(
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)
dont le déterminant vaut r, qui est donc non-nul. La différentielle est donc inversible en tout point. D’après le
théorème d’inversion globale, la bijection réciproque J−1 est de classe C1. On remarque que si z = J(r, θ),
alors r = |z|. Notons π2 la projection sur la seconde coordonnée, i.e., π2(r, θ) := θ. En posant

arg(z) := π2(J
−1(z)) pour tout z ∈ C−

(qui est de classe C1 sur C− par composition) on a alors pour tout z ∈ C−

z = J(J−1(z)) = J(|z|, arg(z)) = |z|ei arg(z).

6. D’après la question précédente, Log est continue sur C−, et pour tout z ∈ C−,

exp(Log(z)) = exp(ln(|z|) + i arg(z)) = |z|ei arg(z) = z.

Soit f := iθ0 + Log ◦ r, où r est définie par

r : C \ eiθ0R− → C− , z 7→ e−iθ0z.

La fonction f est bien définie et continue sur C \ eiθ0R− par composition de fonctions continues, et vérifie

exp(f(z)) = eiθ0eLog(r(z)) = eiθ0r(z) = eiθ0e−iθ0z = z.

C’est donc un logarithme sur C \ eiθ0R−.

Exercice 14.

Soient P,Q ∈ C[X] deux polynômes. On note ZQ = Q−1({0}) l’ensemble des racines de Q, que l’on suppose
non-vide. Soit Ω := C \ ZQ et f : Ω → C la fonction définie par

f(z) =
P (z)

Q(z)
.

1. Démontrer que f est holomorphe sur Ω et qu’en chaque point z0 ∈ Ω, elle admet un développement en série
entière dont le rayon de convergence R(z0) vérifie

R(z0) ≥ min
z∈ZQ

|z − z0|.
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2. Démontrer que si
P−1(0) ∩Q−1(0) = ∅

alors l’inégalité précédente est une égalité, i.e.,

R(z0) = min
z∈ZQ

|z − z0| pour tout z0 ∈ Ω.

Solution 14 1. La fonction f est holomorphe sur Ω comme quotient, puisque Q ne s’annule jamais sur Ω (par
construction). Quitte à appliquer une translation, on peut supposer que z0 = 0 (et donc 0 /∈ ZQ). De plus,
en utilisant la décomposition en élément simples des fractions rationnelles sur C, on peut écrire f comme la
somme d’un polynôme et d’une combinaison linéaire à coefficients complexes de fonctions de la forme

z 7→ (z − w)−p , w ∈ Z , p ∈ N \ {0}.

Pour p = 1, la fonction (z − w)−1 admet le développement en série entière en 0

(z − w)−1 = − 1

w
· 1

1− z/w
= −

∞∑
n=0

zn

wn+1
,

dont le rayon de convergence vaut |w|. Par dérivation terme à terme, la fonction

(z − w)−p =
(−1)p+1

p!

dp

dzp
(z − w)−1

admet elle aussi un développement en série entière de même rayon de convergence |w|. Ainsi par linéarité,
f admet un développement en série entière en 0 de rayon de convergence au moins minw∈ZQ

|w|.
2. Notons ∑

n≥0

anz
n

le développement en série entière de f en 0 et supposons par l’absurde que son rayon de convergence R
vérifie R > r := minw∈ZQ

|w|. Alors d’une part (i) : la fonction g : D(0, R) définie par

g(z) =

∞∑
n=0

anz
n

est continue sur D(0, r) (la série converge normalement sur cet ensemble puisque r < R), donc bornée sur
D(0, r). Mais d’autre part (ii) : g coïncide avec f sur D(0, r) par définition des coefficients (an)n. Or, il
existe w∗ ∈ ZQ tel que |w∗| = α ; et puisque P (w∗) 6= 0 par hypothèse, les opérations habituelles sur les
limites assurent que

lim
|z|<α,z→w∗

|f(z)| = |P (w∗)|
limz→w∗ |Q(z)|

= +∞.

En particulier, g n’est pas bornée sur D(0, r), contredisant (i).

Exercice 17. 1. Discuter l’existence et l’unicité d’une fonction holomorphe f : D → C vérifiant, pour tout
entier n ≥ 2, les égalités :

(a) f
(
1
n

)
= 1− 1

n ,
(b) f

(
1
n

)
= f

(
− 1

n

)
= 1

n

(c) f
(
1
n

)
= n2

1+n2 ,

(d) f
(
1
n

)
= 1√

n
.

2. Même question pour une fonction holomorphe h : D(1, 1) → C, vérifiant pour tout n ≥ 1 les égalités :

(a) h
(
1
n

)
= 0,

(b) h
(
1
n

)
= 1√

n
.
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Solution 17 1. (a) Une telle fonction existe : z 7→ 1−z. D’autre part, comme D est connexe, et comme 0 ∈ D
est un point d’accumulation de l’ensemble

E =

{
1

n

∣∣∣ n ∈ N \ {0, 1}
}

⊂ D ,

le principe des zéros isolés assure que deux fonctions f et g holomorphes sur D et coïncidant sur E
sont nécessairement égales. En effet, l’ensemble zéros de la différence h = f − g admet un point
d’accumulation dans D, donc h est identiquement nulle. Ceci montre que z 7→ 1 − z est l’unique
fonction holomorphe sur D vérifiant les égalités requises.

(b) Il n’existe aucune fonction holomorphe vérifiant cela. En effet, supposons par l’absurde que f est une
fonction holomorphe vérifiant ces égalités. En ne considérant que les entiers n positifs, on constate en
particulier que f coïncide avec la fonction holomorphe z 7→ z sur l’ensemble E défini ci-dessus. Par
le même raisonnement que dans la questino précédente, ceci entraîne donc que

f(z) = z;

et ainsi, f(−1/2) = −1/2. Or f(−1/2) = 1/2 par hypothèse (pour n = −2) : contradiction.
(c) En raisonnement comme au point (a), on trouve que l’unique fonction f satisfaisant ces égalités est

z 7→ 1
1+z2 .

(d) Aucune telle fonction n’existe : on peut le voir en utilisant le fait que r 7→
√
r n’est pas dérivable en

r = 0.

En effet, supposons par l’absurde qu’une telle fonction f existe. Comme f est holomorphe, elle est
continue en 0 donc, par la caractérisation séquentielle de la continuité,

f(0) = lim
n→∞

f

(
1

n

)
= lim

n→∞

1√
n
= 0.

D’autre part, f est dérivable au sens complexe en 0, elle doit donc vérifier

f ′(0) = lim
n→∞

f(0 + 1/n)− f(0)

1/n
;

en particulier la limite ci-dessus doit exister et être finie. Mais ceci est incompatible avec les hypothèses
puisque

f(0 + 1/n)− f(0)

1/n
= n

(
1√
n
− 0

)
=

√
n,

qui diverge lorsque n → ∞
2. (a) Il y a existence mais pas unicité : les fonctions

h1(z) = 0 et h2(z) = sin
(π
z

)
sont distinctes et vérifient toutes les égalités (encore une fois, nous voyons que les zéros d’une fonction
holomorphe non nulle peuvent s’accumuler au bord de son domaine de définition sans contredire le
principe des zéros isolés).

(b) Il ne peut pas y avoir unicité, puisque pour toute fonction h vérifiant les conditions, la fonction h+ h2

(où h2(z) = sin(π/z) comme ci-dessus) est distincte de h et vérifie toujours les conditions. Pour
l’existence, puisque D(1, 1) ⊂ C−, la détermination principale du logarithme, z 7→ Log(z) fournit
un logarithme complexe sur D(1, 1), et la fonction f(z) := exp

(
1
2Log(z)

)
, qui est holomorphe par

composition, vérifie

f(1/n) = exp
(
1

2
ln(1/n)

)
=

1√
n
.

Exercice 9. (Fonction harmoniques et fonctions holomorphes)

Dans cet exercice, Ω ⊂ R2 désigne un domaine (un ouvert connexe non-vide) et u : Ω → R une fonction de classe
C2. Le Laplacien de u, que l’on note ∆u, est la fonction définie sur Ω par

∆u =
∂2u

∂x2
+

∂2u

∂y2
.
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Pour une fonction f à valeurs complexes, cette définition est étendue par linéarité : ∆f := ∆Re(f) + i∆Im(f).
On dit que f est harmonique si ∆f = 0 sur Ω. Dans cet exercice, on admet toute fonction holomorphe est de
classe C2 (au sens de la différentiabilité sur R2) sur son ouvert de définition.

1. Soit f : Ω → C une fonction holomorphe. Vérifier que ∆f = 4 ∂2

∂z∂z̄ = 4 ∂2

∂z̄∂z .
2. En déduire que si f : Ω → C est holomorphe, alors sa partie réelle et sa partie imaginaire sont harmoniques.
3. Réciproquement, démontrer que toute fonction harmonique réelle u est localement la partie réelle d’une

fonction holomorphe ; autrement dit, que pour tout z ∈ Ω, il existe r > 0 et une fonction holomorphe
f : Dr(z) → C telle que u coïncide avec Re(f) sur Dr(z). Indication raisonner par analyse synthèse.

4. On se propose maintenant de démontrer que le résultat précédent n’est pas vérifié “globalement”. À cette
fin, on considère le domaine Ω = C \ {0} et u : Ω → R la fonction définie par

u(x, y) := ln(
√
x2 + y2).

(a) Vérifier que u est harmonique.
(b) Démontrer que si une fonction holomorphe f : Ω → C vérifie Re(f) = u, alors

Re
(
f ′(z)− 1

z

)
= 0.

(c) En déduire que si une telle fonction existe, la fonction z 7→ 1
z admet une primitive holomorphe sur

C \ {0}. Conclure.

Solution 9 1. D’après le résultat admis et le théorème d’interversion des dérivées partielles de Schwarz, les
opérateurs ∂

∂x et ∂
∂y commutent sur l’espace des fonctions holomorphes. On a donc, pour toute fonction f

holomorphe

∂

∂z

∂

∂z̄
f =

∂

∂z̄

∂

∂z
f =

1

4

(
∂

∂x
− i

∂

∂y

)(
∂

∂x
+ i

∂

∂y

)
f =

1

4

(
∂2

∂x2
− i2

∂2

∂y2

)
f =

1

4
∆f.

2. Si f est holomorphe, alors ∂f
∂z̄ = 0, donc d’après la question précédente, ∆f = 0.

3. Soient z0 ∈ Ω et r > 0 tel que Dr(z0) ⊂ Ω. Il suffit de montrer qu’il existe une fonction holomorphe f telle
que u = Re(f) sur Dr(z). Quitte à appliquer une translation et une dilatation, on peut supposer que z0 = 0
et r = 1. Supposons (analyse) qu’une telle fonction f existe, et écrivons là sous la forme f = u + iv où v
est de classe C2 et à valeurs réelles. Pour tout z = x+ iy ∈ D, on a

v(x, y) = v(0, 0) + (v(x, 0)− v(0, 0)) + (v(x, y)− v(x, 0))

= v(0, 0) +

ˆ x

0

∂v

∂x
(t, 0) dt+

ˆ y

0

∂v

∂y
(x, t) dt.

Si f est holomorphe, elle doit vérifier les équations de Cauchy-Riemann, ce qui permettrait d’exprimer les
dérivées partielles ci-dessus en fonction de u. Ceci nous conduit donc (synthèse) à considérer f := u + iv
où

v(x, y) := −
ˆ x

0

∂u

∂y
(t, 0) dt+

ˆ y

0

∂u

∂x
(x, t) dt.

Il suffit de vérifier que les équations de Cauchy-Riemann sont satisfaites. Or, d’après le théorème fondamen-
tal de l’analyse, on a d’une part

∂v

∂y
(x, y) =

∂u

∂x
(x, y),

et d’autre part, par dérivation sous le signe intégral (possible car u est de classe C2)

∂v

∂x
(x, y) = −∂u

∂y
(x, 0) +

ˆ y

0

∂2u

∂x2
(x, t) dt

= −∂u

∂y
(x, 0)−

ˆ y

0

∂2u

∂y2
(x, t) dt (car u est harmonique)

= −∂u

∂y
(x, 0)−

[
∂u

∂y
(x, t)

]y
0

= −∂u

∂y
(x, y).
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4. (a) On trouve
∂2u

∂x2
=

1

x2 + y2
− 2x2

(x2 + y2)
,

∂2u

∂y2
=

1

x2 + y2
− 2y2

(x2 + y2)2

et donc ∆u = 2
x2+y2 − 2 x2+y2

(x2+y2)2 = 0.

(b) Soit f : Ω → C holomorphe telle que Re(f) = u. En notant f = u+ iv (où v = Im(f)) on a pour tout
z = x+ iy,

f ′(z) =
∂f

∂x
(z) =

∂u

∂x
(x, y) + i

∂v

∂x
(x, y).

En particulier, Re(f ′(z)) = ∂u
∂x . Mais

∂u

∂x
(z) =

x

x2 + y2
= Re

(
x− iy

|z|2

)
= Re

(
z̄

|z|2

)
= Re

(
1

z

)
,

d’où

Re
(
f ′(z)− 1

z

)
= 0.

(c) On sait qu’une fonction holomorphe de partie réelle constante est constante (rappel : on utilise les
équations de Cauchy-Riemann, voir le TD1). On en déduit qu’il existe C ∈ C telle que

f ′(z) =
1

z
+ C.

La fonction f(z)− Cz fournit alors une primitive holomorphe de z 7→ 1
z sur Ω.

(d) On vient de voir que si une telle fonction f existait, alors il existerait une primitive holomorphe de 1
z

sur C \ {0}, ce qui contredirait l’exercice 21 (questions 2 et 4) puisque cet ensemble contient le cercle
unité.


