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Abstract

For the h-version of the Finite Element Method
applied to the high-frequency Helmholtz equa-
tion, the sharp criteria to guarantee a k-uniform
quasioptimality (QO) and bounded relative er-
ror (RE) have been studied since the 90s, and
are now well-understood for uniform meshes.
For instance, the sharp condition for QO is that
(hk)pρ(k) be su�ciently small, where h is the
meshwidth, k the wavenumber, p the polyno-
mial degree, and ρ(k) the norm of the Helmholtz
solution operator in suitably normed function
spaces, such that ρ(k) ∝ k for non-trapping
problems. The �pollution e�ect", seen through
the factor ρ(k), is even more pronounced for
trapping problems (e.g. when there are cavities)
since in this case ρ(k) ≫ k.

Our main result (of which Theorem 1 below
is a particular case) is that for trapping prob-
lems, QO and RE can be achieved under weaker
conditions than the aforementioned sharp thresh-
olds, provided one uses non-uniform meshes, with
local mesh re�nement dictated by properties of
the ray dynamics in the propagation domain.
This allows in particular for coarser meshes away
from cavities. Numerical experiments show that
our results are sharp.
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1 Helmholtz scattering problem

We consider sound-soft scattering by an obstacle
Ω− ⊂ Rd (d = 2 or 3):

−k−2 div(A(x)∇u)− n(x)u = f in Ω+, (1)

where Ω+ = Rd \ Ω−, A is a real smooth s.p.d.
matrix, n ∈ C∞(Ω+;R+) positive, and supp(A−
I)∪supp(n−1) ⋐ Ω+. The boundary conditions
are u|∂Ω+

= 0 and the Sommerfeld condition at
in�nity. This problem is truncated to a bounded
domain Ω = ΩPML ∩Ω+ via the method of per-
fectly matched layers. De�ne the norm of the

solution operator

ρ(k) := sup
{
∥u∥L2(Ω) : u solves (1) with

supp f ⊂ Ω, ∥f∥L2(Ω) = 1
}
.

(2)

One has ρ(k) ≳ k [1, Thm. 1.7]. We restrict our
attention to a set of wavenumbers Wpoly ⊂ R+

on which ρ is polynomially bounded, i.e. there
exists N > 0 such that ρ(k) ≲ kN for all k ∈
Wpoly (this can be achieved withWpoly = R+\J
where J has arbitrary small measure, see [2]).

2 Regions de�ned by ray-dynamics

Given a mesh T of Ω, we let uh be the stan-
dard Galerkin approximation of the problem (1)
truncated to Ω, in the space V p

T of continuous
piecewise-polynomial (with respect to T ) func-
tions of degree p, which vanish on ∂Ω. To de-
scribe the relevant local mesh sizes, we now de-
�ne several regions in terms of the ray trajecto-

ries, i.e. geodesics for the metric g−1 = A/n in
Ω+, continued by re�ection at the boundary.1

Reg. 1: The cavity K ⊂ Ω+: the set of points
lying on a ray which is both forward and
backward-trapped (meaning that this ray
stays in a compact set for all positive and
negative times).

Reg. 2: The visible set (from the cavity) Γ ⊂ Ω+:
the set of points lying on a ray which is
either forward or backward-trapped.

Reg. 3: The invisible set I := Ω+ \ Γ.

The problem is trapping when K ̸= ∅, in which
case it can be proved that ρ(k) ≫ k as k → ∞
[5] (at least through some sequence of wavenum-
bers k). In what follows, ΩK , ΩΓ and ΩI are
open neighborhoods ofK, Γ and I, and hK , hΓ, hI
denote upper bounds for the diameter of any el-
ement intersecting ΩK ,ΩΓ,ΩI , respectively. Let

1For example if A = n = 1, these are the straight-line
paths re�ected by Snell-Descartes laws at the boundary.
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Figure 1: Example of a non-uniform mesh, with
the obstacle Ω− given by the two rounded rect-
angles.

H := diag(hK , hΓ, hI) (the 3 × 3 diagonal ma-
trix with entries hK , hΓ and hI). An example of
non-uniform mesh with di�erent thresholds in
di�erent regions is shown in Figure 1.

3 Main result

To state our main result, we de�ne the matrix

C :=

 ρ(k)
√

kρ(k) 0√
kρ(k) k k
0 k k

 .

The coe�cient Cij describes how large the solu-
tion u can be in region i (up to O(k−∞) remain-
ders), if the data f is supported in region j with
unit norm [3,4]. Given a constant C† > 0, let

A(C†) :=

(
+∞∑
n=0

Cn
† (C(Hk)2p)n

)
C(Hk)p

the accumulation matrix (which describes the
propagation of numerical errors between regions).
Finally, for any open set U , denote ∥u−uh∥2U :=
∥u∥2L2(U) + k−2∥∇u∥2L2(U) the �dimension-less"
energy norm.

Theorem 1 (Main result) There exists C† >
0 such that for all 0 < c < 1, there exists C > 0
such that for all k ∈ Wpoly and all meshes T
satisfying

(hKk)2pρ(k) + (hΓk)
2pk + (hIk)

2pk < c,

the Galerkin solution, uh ∈ V p
T , to (1) truncated

to Ω by a PML exists, is unique, and satis�es∥u− uh∥ΩK

∥u− uh∥ΩΓ

∥u− uh∥ΩI

 ≤ C
[
Id+A(C†)

]∥u− wh∥ΩK

∥u− wh∥ΩΓ

∥u− wh∥ΩI


for all wh ∈ V p

T , where the inequality is under-

stood component-wise.

Using this result, one can �nd mesh conditions
to guarantee QO and RE that are weaker than
the known ones for uniform meshes:

Corollary 2 (Condition for QO) Under the

assumptions of Theorem 1, if

(hKk)pρ(k) + (hΓk)
p
√

kρ(k) + (hIk)
pk < c,

then the Galerkin solution satis�es

∥u− uh∥Ω ≤ C∥u− wh∥Ω

for all wh ∈ V p
T , i.e., it is k-uniformly quasi-

optimal.

Corollary 3 (Condition for RE) Under the

assumptions of Theorem 1, for any ε ≤ c, if

(hKk)2pρ(k) + (hΓk)
2p
√
kρ(k) + (hIk)

2pk < ε,

then the Galerkin solution satis�es

∥u− uh∥Ω ≤
√
εC∥u∥Ω

for all wh ∈ V p
T , i.e., th relative error is control-

lably small.
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