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1. Examen 1

Exercice 1. Soit un ouvert connexe non vide ω ⊂ C, soit z0 ∈ ω, et soit une fonction
f ∈ O(ω\{z0}) holomorphe en-dehors de z0. On suppose que f est bornée au voisinage de
z0, au sens où il existe un rayon r > 0 assez petit avec Dr(z0) ⊂ ω et il existe une constante
0 ⩽ M <∞ tels que :

sup
|z−z0|<r
z ̸= z0

∣∣f(z)∣∣ ⩽ M.

On fixe z1 ∈ Dr(z0) avec z1 ̸= z0.
(a) Dresser une figure illustrative complète et esthétique.
(b) Montrer, pour 0 < ε ⩽ 1

2
|z1−z0|, que pour tout ζ ∈ Cε(z0), on a |ζ−z1| ⩾ 1

2
|z1−z0|.

(c) Montrer que :

0 = lim
ε→
>
0

∫
Cε(z0)

f(ζ)

ζ − z1
dζ.

(d) Soient les deux points :

ζ1 := z0 + r
z1 − z0
|z1 − z0|

,

ζ0 := z0 − r
z1 − z0
|z1 − z0

.

Soient aussi deux quantités petites 0 < δ < ε ⩽ 1
3
|z1 − z0|. On construit le contour Γδ,ε

à deux trous de serrure de largeur 2δ qui partent orthogonalement du cercle Cr(z0) en les
deux points ζ1 et ζ0, avec contournement de z1 puis de z0 le long de cercles de rayon ε.

Dresser une nouvelle figure esthétique dans laquelle tous ces éléments apparaissent clai-
rement — couleurs recommandées !
(e) Justifier par un théorème du cours que :

0 =

∫
Γδ,ε

f(ζ)

ζ − z1
dζ.

(f) Montrer que :

0 =
1

2iπ

∫
Cr(z0)

f(ζ)

ζ − z1
dζ − 1

2iπ

∫
Cε(z1)

f(ζ)

ζ − z1
− 1

2iπ

∫
Cε(z0)

f(ζ)

ζ − z1
dζ.

1
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(g) Montrer que :

f(z1) =
1

2iπ

∫
Cr(z0)

f(ζ)

ζ − z1
dζ.

(h) Justifier l’holomorphie dans Dr(z0) de la fonction :

z 7−→
∫
Cr(z0)

f(ζ)

ζ − z
dζ.

(i) Montrer qu’il existe une unique fonction holomorphe f̃ ∈ O(ω) telle que f̃
∣∣
ω\{z0}

= f .

(j) Montrer que tout ce qui précède est encore valable en supposant plus généralement qu’il
existe un exposant 0 ⩽ α < 1 et une constante 0 ⩽ M <∞ tels que :∣∣f(z)∣∣ ⩽ M

1

|z − z0|α
(∀ 0< |z−z0|<r).

Exercice 2. Soit un nombre réel a > 0. L’objectif est de calculer, au moyen de la méthode
des résidus, les deux intégrales de Riemann généralisées :

I :=

∫ ∞
0

1

x2 + a2
dx et J :=

∫ ∞
0

log x

x2 + a2
dx.

(a) Commencer par justifier l’existence de I .
(b) On introduit la fonction f(z) := 1

z2+a2
. Calculer Resf (i a).

(c) Avec R > a, dessiner le contour orienté fermé consistant en le segment [−R, R] suivi du
demi-cercle de rayon R au-dessus de l’axe réel.
(d) Montrer que :

0 = lim
R→∞

∫ π

0

d (R eiθ)

(R eiθ)2 + a2
.

(e) Montrer que :

I =
π

2 a
.

(f) On choisit la détermination de la fonction logarithme complexe sur :

C
∖
iR−,

définie, pour z = r eiθ avec r > 0 et avec −π
2
< θ < 3π

2
, par log z := log r + i θ. Sur cet

ouvert C\iR−, on considère la fonction holomorphe :

g(z) :=
log z

z2 + a2
.

Avec 0 < ε < a et avec R > a, dessiner le contour orienté fermé consistant en le
segment [−R,−ε], suivi du demi-cercle de rayon ε au-dessus de l’axe réel, suivi du segment
[ε, R], suivi du demi-cercle de rayon R au-dessus de l’axe réel.
(g) Montrer que :

J =
π

2 a
log a.

Indication: Calculer d’abord Resg(i a) en utilisant la valeur de log i, que l’on déterminera
auparavant.
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Exercice 3. Dans un ouvert connexe non vide Ω ⊂ C, pour une courbe C 1
pm (continue)

γ : [0, 1] −→ Ω fermée γ(0) = γ(1) que l’on identifie γ ≡ γ
(
[0, 1]

)
à son image, on définit

l’indice de tout point w ∈ C\γ par rapport à γ par l’intégrale :

Indγ(w) :=
1

2iπ

∫
γ

dz

z − w
.

(a) Avec Ω := C, en utilisant deux couleurs différentes, tracer une courbe qui tourne −2
fois autour de 0, puis une autre qui tourne +3 fois.
(b) On introduit, pour t ∈ [0, 1], la fonction :

Φ(t) := exp

(∫ t

0

γ′(s)

γ(s)− w
ds

)
.

Calculer la dérivée de t 7−→ Φ(t)
γ(t)−w sur [0, 1].

(c) Montrer que :

Φ(t) =
γ(t)− w
γ(0)− w

(∀ t∈ [0,1]).

(d) Montrer que :
Indγ(w) ∈ Z.

(e) On suppose dorénavant que l’ouvert connexe Ω est de plus simplement connexe.
D’après le cours, si w ∈ Ω est un point de référence fixé, cela implique que deux
courbes γ0 : [0, 1] −→ Ω et γ1 : [0, 1] −→ Ω quelconques C 1

pm (continues) allant de
w = γ0(0) = γ1(0) à un autre point quelconque γ0(1) = γ1(1) = z ∈ Ω sont toujours
homotopes à travers une famille continue

{
t 7−→ γs(t)

}
s∈[0,1] de courbes C 1

pm toutes conte-
nues dans Ω.

Justifier alors que toute fonction holomorphe g ∈ O(Ω) possède une primitive G ∈
O(Ω) avec G′ = g.
(f) Justifier que pour toute courbe C 1

pm fermée γ ⊂ Ω, on a :

0 =

∫
γ

g(z) dz (∀ g ∈O(Ω)).

Maintenant, soit un ouvert connexe non vide ω ⊂ Ω, soit w ∈ ω et soit un rayon
R > 0 tel que DR(w) ⊂ ω. Toute fonction holomorphe f ∈ O

(
ω\{w}

)
en-dehors de w se

développe alors en série de Laurent :

f(z) =
∞∑

n=−∞

an
(
z − w

)n
,

normalement convergente sur les compacts de DR(w), avec des coefficients donnés par la
formule :

an :=
1

2iπ

∫
Cr(w)

f(ζ)

(ζ − w)n+1
dζ (n∈Z),

indépendamment du choix d’un rayon intermédiaire 0 < r < R.
(g) Avec 0 < r < R fixé, montrer pour tout n ⩽ −1 que :∣∣an∣∣ ⩽ max

ζ∈Cr(w)

∣∣f(ζ)∣∣ · r−n.
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(h) Montrer que :
lim sup
−∞←n

|n|
√
|an| ⩽ r.

(i) Montrer que le rayon de convergence de la série entière :
∞∑
n=1

a−n Z
n

vaut∞.
(j) Montrer que la partie singulière :

h(z) :=
−1∑

n=−∞

an
(
z − w

)n
définit une fonction holomorphe dans C\{w}.
(k) Montrer l’holomorphie dans ω de la fonction :

g := f − h ∈ O(ω).

(l) On suppose maintenant que l’ouvert connexe et simplement connexe Ω ⊂ C contient
un nombre fini L ⩾ 1 de points-singularités distincts w1, . . . , wL ∈ Ω, et on considère une
fonction holomorphe :

f ∈ O
(
Ω
∖
{w1, . . . , wL}

)
en-dehors de ces points, ainsi qu’une courbe C 1

pm fermée :

γ ⊂ Ω
∖{
w1, . . . , wL

}
.

Enfin, on introduit les parties singulières de f dans certains petits voisinages ouverts ωℓ ∋
wℓ :

hℓ(z) :=
−1∑

n=−∞

aℓ,n
(
z − wℓ

)n
(1⩽ ℓ⩽ L).

Montrer l’holomorphie partout dans Ω de la fonction :

g(z) := f(z)− h1(z)− · · · − hL(z) ∈ O(Ω).

(m) Établir la formule des résidus homologique :
1

2iπ

∫
γ

f(z) dz = Indγ(w1) · Resf (w1) + · · ·+ Indγ(wL) · Resf (wL).

Exercice 4. [Sans indications] (a) Pour ξ ∈ R+, montrer que :∫ ∞
−∞

e−2iπξx

(1 + x2)2
dx =

π

2

(
1 + 2 π ξ

)
e−2πξ.

(b) Montrer que : ∫ ∞
−∞

dx

(1 + x2)n+1
=

1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
π.
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2. Examen 2

Exercice 1. Soit D :=
{
ζ ∈ C : |ζ| < 1

}
le disque unité dans C, soit w ∈ D fixé, et soit :

φw(z) :=
z − w
1− wz

.

(a) Montrer que φw ∈ O(D) ∩ C 0
(
D
)
.

(b) Montrer que
∣∣φw(z)

∣∣ = 1 pour tout |z| = 1, puis que
∣∣φw(z)

∣∣ ⩽ 1 pour tout z ∈ D, et
enfin que

∣∣φw(z)
∣∣ < 1 pour tout z ∈ D.

(c) Soit une suite infinie
{
zn
}∞
n=1

de points non nuls zn ∈ D\{0} satisfaisant :
∞∑
n=1

(
1− |zn|

)
< ∞.

On pose :

Fn(z) :=
|zn|
zn

zn − z
1− znz

(z ∈D).

Pour z ∈ D fixé, montrer que :∣∣Fn(z)− 1
∣∣ ⩽

1 + |z|
1− |z|

(
1− |zn|

)
.

Indication: Utiliser, après l’avoir justifiée, l’inégalité 1
|1−znz| ⩽

1
1−|z| .

(d) Montrer que le produit infini F (z) :=
∏∞

n=1 Fn(z) converge normalement sur les com-
pacts de D. Indication: On rappelle qu’un produit infini

∏∞
n=1 Fn(z) est dit normalement

convergent sur un compact K ⊂ D si la série
∑∞

n=1

(
Fn(z)− 1

)
est normalement conver-

gente sur K.
(e) Montrer que

∣∣F (z)∣∣ ⩽ 1 pour tout z ∈ D.
(f) Quel problème la fonction F (z) résout-elle ?
(g) Maintenant, soit une fonction holomorphe f : D −→ D non constante, avec f(0) = 0.
Pour w ∈ D

∖
{0} non nul, on note :

f−1(w) :=
{
z ∈ D : f(z) = w

}
.

On suppose Card f−1(w) =∞.
Justifier que l’on peut écrire :

f−1(w) =
{
zn
}∞
n=1

,

avec zn ∈ D et :
1 = lim

n→∞
|zn|.

(h) On pose :
g(z) := φw

(
f(z)

)
,

en rappelant que φw(z) :=
z−w
1−wz

. Montrer que g(D) ⊂ D.
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(i) Pour N ⩾ 1 entier, on pose :

BN(z) :=
N∏

n=1

z − zn
1− znz

.

Montrer qu’il existe hN ∈ O(D) telle que :

g(z) = BN(z)hN(z) (∀ z ∈D).

(j) Montrer que pour tout 0 < ε < 1 (censé être arbitrairement proche de 0), il existe un
rayon 0 < rε < 1 (censé être proche de 1) tel que :∣∣BN(z)

∣∣ ⩾ 1− ε (∀ |z|= rε).

(k) Montrer que
∣∣hN(0)

∣∣ ⩽ 1.
(l) On introduit maintenant la fonction de comptage de Nevanlinna :

Nf (w) :=
∑

z∈f−1(w)

log
1

|z|

=
∞∑
n=1

log
1

|zn|
.

Montrer que :
∞∑
n=1

log
1

|zn|
⩽ log

1

|w|
.

(m) Montrer que :
∞∑
n=1

(
1− |zn|

)
< ∞.

(n) Soit maintenant F ∈ O(D), bornée
∣∣F (z)∣∣ ⩽ M < ∞ pour tout z ∈ D, et non

identiquement nulle F ̸≡ 0. Soient
{
zn
}∞
n=1

ses zéros, supposés en nombre infini. On
suppose temporairement que M = 1 et que F (0) ̸= 0.

Montrer que
∑∞

n=1

(
1− |zn|

)
<∞. Indication: Introduire :

f(z) :=
F (z)− F (0)
1− F (0)F (z)

.

(o) Montrer que cela se généralise sans supposer M = 1 et F (0) ̸= 0.
(p) Interpréter le résultat obtenu en l’énonçant sous la forme d’un théorème synthétique.

Exercice 2. (a) Montrer que la fonction ζ(s) =
∑∞

n=1
1
ns de Riemann satisfait, pour s ∈ R

avec s > 1 :

log ζ(s) =
∑
p∈P

∞∑
m=1

1

m

1

pms
.

Indication: Penser à la formule de produit infini d’Euler, vue en cours.
(b) Justifier que ζ(s) ̸= 0 pour tout z ∈ C avec Re s > 1, puis justifier l’existence et
l’holomorphie d’une fonction s 7−→ log ζ(s) définie dans {Re s > 1} et prenant des valeurs
réelles sur ]1,∞[.
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(c) Montrer que pour tout s ∈ C avec Re s > 1, on a encore :

log ζ(s) =
∑
p∈P

∞∑
m=1

1

m

1

pms
.

Indication: Penser au principe d’unicité pour les fonctions holomorphes qui coïncident sur un
ensemble ayant un point d’accumulation.
(d) Toujours pour Re s > 1, montrer que :

− ζ
′(s)

ζ(s)
=

∞∑
n=1

Λ(n)

ns
,

où Λ est la fonction de von Mangoldt :

Λ(n) :=

{
log p lorsque n = pα avec p ∈P et α ⩾ 1,

0 autrement.

(e) Pour c > 1 fixé, en notant comme Riemann s = σ + it, on considère la droite réelle
verticale

{
c+ it : −∞ < t <∞

}
orientée du bas vers le haut. Soit l’intégrale dépendant

du paramètre a > 0 :

I(a) :=
1

2iπ

∫ c+i∞

c−i∞

as

s (s+ 1)
ds.

Montrer qu’elle converge. Indication:
∣∣as∣∣ = ac.

(f) On suppose dorénavant, jusqu’à la Question (j) ci-dessous, que a ⩾ 1. Soit la fonction
méromorphe sur C :

f(s) :=
as

s(s+ 1)
.

Calculer Resf (0), puis Resf (−1).
(g) Avec un rayon R > 1 + c (qui tendra vers l’infini), on considère le contour orienté
Γ−R consistant en le segment vertical

[
c− iR, c+ iR

]
parcouru du bas vers le haut, suivi du

demi-cercle C−R centré en c de rayon R situé à gauche de l’axe vertical {Re s = c}. Dessiner
Γ−R avec tous les détails possibles.
(h) Trouver la valeur de :

1

2iπ

∫
Γ−

R

f(s) ds = ?.

(i) Montrer que :

0 = lim
R→∞

∫
C−

R

f(s) ds.

Indication: Utiliser, après l’avoir justifiée, l’inégalité valable pour tous rayons R ⩾ Rc ≫ 1
assez grands : ∣∣s (s+ 1)

∣∣ ⩾ 1
2

R2.

(j) Toujours avec c > 1 fixé, montrer que :

1

2iπ

∫ c+i∞

c−i∞

as

s (s+ 1)
ds =

{
1− 1

a
quand 1 ⩽ a,

0 quand 0 < a ⩽ 1.

Indication: Changer de demi-cercle, et faire d’abord une figure (notée !).



8 François DE MARÇAY, Département de Mathématiques d’Orsay, Université Paris-Saclay, France

(k) On introduit maintenant la fonction psi de Tchebychev :

ψ(x) :=
∑

1⩽n⩽x

Λ(n),

puis :

ψ1(x) :=

∫ x

1

ψ(u) du.

Montrer que :

ψ1(x) =
∞∑
n=1

∫ x

1

Λ(n)1[n,∞[(u) du.

(l) Montrer que :
ψ1(x) =

∑
1⩽n⩽x

Λ(n) ·
(
x− n

)
.

(m) Montrer que pour tout δ > 0, la série
∑∞

n=1
Λ(n)
ns converge normalement dans

{
Re s >

1 + δ
}

.
(n) Montrer que :

ψ1(x) =
1

2iπ

∫ c+i∞

c−i∞

(
− ζ ′(s)

ζ(s)

)
xs+1

s (s+ 1)
ds.

Exercice 3. Soit τ ∈ C fixé avec Im τ > 0.
(a) Montrer que la fonction Thêta de Jacobi définie par :

Θτ (z) :=
∞∑

n=−∞

eiπn
2τ e2iπnz (z ∈C),

est une fonction holomorphe entière. Indication: Poser t := Im τ > 0, et observer que pour
4 |z|
t

⩽ |n|, on a −n2t+ 2 |n| |z| ⩽ −n2 t
2
.

(b) Montrer qu’il existe deux constantes 0 < A, B <∞ telles que :∣∣Θτ (z)
∣∣ ⩽ A eB |z|2

(∀ z ∈C).

(c) Montrer que la fonction :

f(z) := z +
∑
n∈Z∗

eiπn
2τ e

2iπnz

2iπn

est une fonction holomorphe entière non constante. Indication: Observer que f(x) −→ ∞
lorsque R ∋ x −→∞.
(d) Montrer que Θτ n’est pas identiquement nulle sur C. Indication: Vérifier que f ′ = Θτ .
(e) Montrer que Θτ

(
z +mτ

)
= e−iπm

2τ e−2iπmz Θτ (z), pour tout z ∈ C et tout m ∈ Z.
(f) Montrer que Θτ est une fonction holomorphe entière d’ordre exactement égal à 2.
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3. Examen 3

Exercice 1. On note C :=
{
z = x + i y ∈ C : x2 + y2 = 1

}
le cercle unité dans C.

L’objectif est de calculer des intégrales de la forme :∫ 2π

0

R
(
cos t, sin t

)
dt,

où R est une fraction rationnelle à coefficients réels :

R(x, y) =
P (x, y)

Q(x, y)
avec deux polynômes P (x, y), Q(x, y) ∈ R[x, y],

dont le dénominateur Q(x, y) n’a pas de pôle sur C, c’est-à-dire que Q
∣∣
C
̸= 0. À R(x, y),

on associe la fonction :

f(z) :=
1

i z
R
(z2 + 1

2 z
,
z2 − 1

2i z

)
.

On rappelle que C est le bord du disque unité D := {|z| < 1}.
(a) Montrer que : ∫ 2π

0

R
(
cos t, sin t

)
dt = 2iπ

∑
z0∈D

Resf (z0).

Indication: Écrire z = eit sur le cercle unité C.
(b) Pour un paramètre réel a > 1, soit l’exemple :

R(x, y) :=
1

a+ y
.

Déterminer les deux pôles z1 et z2 de la fonction f(z) associée, avec |z1| < |z2|. Indication:

Ne pas faire d’erreur de calcul ! z1 et z2 sont tous deux imaginaires purs.
(c) Calculer Resf (z1) en fonction de z1 et de z2.
(d) Montrer que : ∫ 2π

0

1

a+ sin t
dt =

2π√
a2 − 1

.

Exercice 2. Soit f : D −→ C une fonction holomorphe définie sur le disque unité D ={
z ∈ C : |z| < 1

}
qui est bornée, au sens où il existe une constante M < ∞ telle que∣∣f(z)∣∣ ⩽ M, pour tout z ∈ D. On suppose que f

(
r eiθ

)
converge vers 0 lorsque r <−→ 1,

uniformément pour t ∈
[
0, π

4

[
:

∀ ε > 0 ∃ rε < 1
(
rε < r < 1 =⇒

∣∣f(r eit)∣∣ ⩽ ε ∀ t ∈
[
0, π

4

[)
.

(a) On introduit la fonction auxiliaire définie par :

g(z) :=
7∏

k=0

f
(
z e−i

kπ
4

)
(z ∈D).
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Vérifier que g ∈ O(D).
(b) Montrer que :

∀ ε > 0 ∃ rε < 1
(
rε < r < 1 =⇒

∣∣g(r eiθ)∣∣ ⩽ ε ∀ θ ∈ R
)
.

(c) Montrer que g ≡ 0.
(d) Montrer que f ≡ 0.
(e) Tout cela serait-il encore vrai si, pour un entier n ⩾ 1 fixé, on supposait que f

(
r eiθ

)
converge vers 0 lorsque r <−→ 1, uniformément pour tout θ ∈

[
0, π

2n

[
?

Exercice 3. Dans le plan complexe C, soit un ouvert Ω qui contient le demi-plan supérieur
fermé :

Ω ⊃ H+
:=

{
z ∈ C : Im z ⩾ 0

}
.

Soit aussi une fonction holomorphe dans cet ouvert :

f ∈ O
(
Ω
∖{
a1, . . . , aK

})
,

en-dehors d’un nombre fini K ⩾ 1 de points a1, . . . , aK ∈ H+ tous contenus dans le demi-
plan supérieur ouvert H+ :=

{
Im z > 0}. L’objectif est de démontrer que :

lim
R→∞

∫ R

−R

f(x) eix dx = 2iπ
K∑

k=1

Res
(
f(z)eiz, ak

)
,

sous l’hypothèse que :
0 = lim

r→∞
max
0⩽θ⩽π

∣∣f(r eiθ)∣∣,
et d’appliquer ensuite cette formule générale dans un cas spécifique concret.
(a) Soient deux angles 0 ⩽ θ1 < θ2 ⩽ π, soit un rayon r1 > 0, et soit une fonction h
continue dans le secteur angulaire fermé :

S
r1
θ1,θ2

:=
{
z ∈ C : r1 ⩽ |z|, θ1 ⩽ Argz ⩽ θ2

}
.

Dessiner soigneusement ce secteur S
r1
θ1,θ2

.
(b) Sans chercher à la démontrer au moyen d’inégalités, justifier par un dessin accompagné
d’explications éclairantes l’inégalité classique suivante, valable pour tout 0 ⩽ θ ⩽ π

2
:

sin θ ⩾
2

π
θ.

(c) Montrer que : ∫ π/2

0

e−r sin θ r dθ ⩽
π

2
.

(d) Soit une fonction continue h ∈ C 0
(
S
r1
θ1,θ2

)
. On introduit, pour tout rayon r ⩾ r1, les

quantités :
Mh(r) = max

θ1⩽θ⩽θ2

∣∣h(r eiθ)∣∣,
ainsi que les arcs de cercle :

Cr
θ1,θ2

:=
{
r eiθ : θ1 ⩽ θ ⩽ θ2

}
.
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Montrer que : ∣∣∣∣ ∫
Cr

θ1,θ2

h(z) eiz dz

∣∣∣∣ ⩽ Mh(r) · π.

(e) En déduire que :

0 = lim
R→∞

∫ π

0

f
(

R eiθ
)
ei R eiθ i R eiθ dθ.

(f) Conclure, en détaillant précisément tous les arguments, que :

lim
R→∞

∫ R

−R

f(x) eix dx = 2iπ
K∑

k=1

Res
(
f(z)eiz, ak

)
.

(g) Montrer, pour tout r ⩾ 4, que :∣∣∣∣∣ 1

1 + 1
r eiθ

+ 1
(r eiθ)2

∣∣∣∣∣ ⩽ 2,

et ensuite, déterminer les deux racines complexes a et b du polynôme z2 + z + 1.
(h) Montrer que : ∫ ∞

−∞

eix

x2 + x+ 1
dx =

2π√
3
e−

√
3
2

(
cos 1

2
− i sin 1

2

)
.

Exercice 4. Sur un intervalle compact [a, b] ⊂ R avec −∞ < a < b < ∞, le célèbre
Théorème de Weierstrass stipule que toute fonction continue f ∈ C 0

(
[a, b],R

)
peut être

approximée à volonté en norme uniforme par de simples polynômes :

∀ ε > 0 ∃P = Pε(x) ∈ R[x] tel que max
x∈[a,b]

∣∣f(x)− P (x)∣∣ ⩽ ε.

Existe-t-il un résultat similaire en Analyse Complexe? Tout devient 2-dimensionnel !
On va regarder un compact quelconque K ⊂ C, éventuellement d’intérieur non vide, et
des fonctions qui sont holomorphes dans un voisinage ouvert Ω ⊃ K, éventuellement très
« resserré » autour de K. Dans ces circonstances, a-t-on :

∀ f ∈ O(Ω) ∀ ε > 0 ∃P (z) ∈ C[z] tel que max
z∈K

∣∣f(z)− P (z)∣∣ ⩽ ε?

Cela serait un résultat remarquable, car les polynômes sont des objets globaux, définis pour
tout z ∈ C.
(a) Soit une série entière

∑∞
n=0 an z

n à coefficients complexes an ∈ C, dont le rayon de
convergence R satisfait :

0 < R < ∞.
Justifier, pour tout δ > 0, l’existence d’un (grand) entier N(δ) ≫ 1 tel que, pour tout
n ⩾ N(δ), on ait :

n
√
|an| ⩽

1

R
+ δ.

(b) Soit un compact K ⊂ DR contenu dans le disque ouvert DR de rayon R centré en
l’origine 0 ∈ C. Vérifier qu’il existe 0 < r < R tel que K ⊂ Dr.
(c) En choisissant δ > 0 assez petit pour que :

q :=
(1

R
+ δ

)
r < 1,
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montrer, pour tout N ⩾ N(δ), l’inégalité valable quel que soit z ∈ K :∣∣∣∣ ∞∑
n=N

an z
n

∣∣∣∣ ⩽ qN 1

1− q
.

(d) En raisonnant très précisément, toujours avec K ⊂ DR compact, établir la propriété
attendue :

∀ f ∈ O(DR) ∀ ε > 0 ∃P (z) ∈ C[z] tel que max
z∈K

∣∣f(z)− P (z)∣∣ ⩽ ε.

Exercice 5. Soit DR le disque de rayon R > 1 centré en 0 ∈ C, et soit un point ζ0 ∈ C =
∂D1 sur le cercle unité, i.e. avec |ζ0| = 1. L’objectif est d’étudier les fonctions méromorphes
f ∈M

(
DR

)
∩ O

(
DR\{ζ0}

)
qui ont un unique pôle simple (d’ordre 1) en ζ0.

(a) Faire une figure, et justifier que f(z) =
∑∞

n=0 an z
n se développe à l’origine en une

série entière qui converge pour |z| < 1.
(b) Montrer qu’il existe une constante non nulle α ∈ C∗ telle que la fonction auxiliaire :

g(z) := f(z)− α

z − ζ0
soit holomorphe dans DR. Comment appelle-t-on α?
(c) Montrer que les coefficients bn du développement en série entière g(z) =

∑∞
n=0 bnz

n

satisfont bn −→
n→∞

0.

(d) Montrer que an ̸= 0 à partir d’un certain rang, puis établir que lim
n→∞

an
an+1

= ζ0, et enfin,
interpréter intelligemment ce résultat.

Exercice 6. [Sans indications] Sur le cercle unité C :=
{
|z| = 1

}
, soient n ⩾ 1 points

w1 = eit1 , . . . , wn = eitn avec 0 ⩽ tk < 2π pour k = 1, . . . , n.
(a) Trouver (au moins) un point z∗ = eiθ

∗ ∈ C satisfaisant :∏
1⩽k⩽n

∣∣z∗ − wk

∣∣ = 1.
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4. Examen 4

Exercice 1. L’objectif ici est de produire une démonstration simplifiée, due à Landau, de
la dernière partie (difficile) de la démonstration du théorème de factorisation de Hadamard
pour les fonctions entières d’ordre fini. Des préliminaires sont nécessaires.
(a) Soit un rayon R > 0, soit un ouvert ω ⊃ DR(0) = DR, et soit une fonction holomorphe
φ : ω −→ C. On suppose que

∣∣φ(z)∣∣ ⩽ S <∞ pour tout |z| ⩽ R et que φ(0) = 0. Montrer
que : ∣∣φ(z)∣∣ ⩽

S

R
|z| (∀ z ∈DR).

Indication: Utiliser φ(z)
z

.

(b) Soient encore R > 0 et Ω ⊃ DR un autre ouvert. Pour toute h ∈ O(Ω) et tout rayon
intermédiaire 0 ⩽ r ⩽ R, on note :

Mh(r) := max
|z|=r

∣∣h(z)∣∣ et Ah(r) := max
|z|=r

Reh(z).

On note aussi Cr := {|z| = r}. On supposera toujours que h(0) = 0 et que h est non
constante. On admettra la propriété 0 < Ah(r) < Ah(R) pour 0 < r < R, conséquence
élémentaire du principe du maximum. On introduit :

φ(z) :=
h(z)

2Ah(R)− h(z)
.

Vérifier, pour |z| = r et 0 ⩽ r ⩽ R, que :

Re
(
2Ah(r)− h(z)

)
⩾ Ah(r),

et montrer que φ est holomorphe dans un voisinage ouvert de DR.
(c) On décompose en parties réelle et imaginaire h(z) = u(z) + i v(z). Montrer que∣∣φ(z)∣∣2 ⩽ 1 pour tout |z| ⩽ R.
(d) Montrer que : ∣∣h(z)∣∣ ⩽

2Ah(R) |z|
R − |z|

.

(e) En déduire l’inégalité de Borel-Carathéodory, valable pour tout rayon 0 ⩽ r < R :

Mh(r) ⩽
r + r

R − r
Ah(R).

(f) Maintenant, on souhaite généraliser cette inégalité aux dérivées de h d’ordre quel-
conque. Soit un rayon intermédiaire quelconque 0 ⩽ r < R, et soit z ∈ Cr arbitraire.
On pose :

ρ := R−r
2
,

et on introduit :
Cρ(z) :=

{
ζ ∈ C : |ζ − z| = ρ

}
.

Dresser une figure élégante.
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(g) Montrer que :

max
|ζ−z|=ρ

∣∣h(ζ)∣∣ ⩽
4 R

R − r
Ah(R).

(h) Montrer que pour tout 0 ⩽ r < R et tout entier n ⩾ 0, on a :

max
|z|=r

∣∣h(n)(z)∣∣ ⩽
2n+2 n! R

(R − r)n+1
Ah(R).

(i) Maintenant, soit f ∈ O(C) une fonction holomorphe entière avec f(0) = 1 dont l’ordre
de croissance ρf < ∞ est fini. Soit κ := Ent ρf , d’où κ ⩽ ρf < κ + 1. Pour ε > 0 assez
petit, en posant ρ := ρf + ε, on a encore κ ⩽ ρ < κ + 1, et il existe par définition une
constante C > 0 telle que : ∣∣f(z)∣∣ ⩽ C e|z|

ρ

(∀ z ∈C).

On suppose que f possède un nombre infini de zéros isolés
{
an
}∞
n=1

ordonnés par modules
croissants 0 < |an| ⩽ |an+1| et répétés ν fois aux zéros d’ordre ν ⩾ 2. Ainsi, f(z) = 0 si
et seulement si z = an pour un n ⩾ 1.

En cours au tableau, on a démontré que :
∞∑
n=1

1

|an|κ+1
< ∞.

Ensuite dans le polycopié, en introduisant les facteurs canoniques à exponentielle polyno-
miale de degré κ :

Eκ

(
z
an

)
:=

(
1− z

an

)
e

z
an

+ 1
2
( z
an

)2+···+ 1
κ
( z
an

)κ ,

on a aussi démontré la convergence normale sur les compacts de C du produit infini :

Π(z) =
∞∏
n=1

Eκ

(
z
an

)
.

Comme f(z) et Π(z) ont les mêmes zéros, les singularités de f(z)
Π(z)

sont éliminables, cette
fonction n’a aucun zéro, d’où il découle comme C est simplement connexe que son loga-
rithme existe, et par conséquent on peut écrire :

f(z) = eQ(z)

∞∏
n=1

Eκ

(
z
an

)
= eQ(z)

∞∏
n=1

(
1− z

an

)
e

z
an

+ 1
2
( z
an

)2+···+ 1
κ
( z
an

)κ ,

au moyen d’une certaine fonction holomorphe entière Q ∈ O(C).
En admettant ces résultats, la fin difficile de la démonstration du Théorème de facto-

risation de Hadamard consistait à établir que Q(z) ∈ C[z] est alors nécessairement un
polynôme de degré ⩽ κ. Les arguments qui suivent, dus à Landau et tirés du traité de
Titchmarsh, offrent une alternative élégante à la démonstration originale vue en cours.

Justifier très rapidement la formule dans C
∖{
an
}∞
n=1

:

f ′(z)

f(z)
= Q′(z) +

∞∑
n=1

(
− 1

an − z
+

d

dz

[ z
an

+
1

2

( z
an

)2
+ · · ·+ 1

κ

( z
an

)κ])
.
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(j) Soit un rayon arbitraire R > 0. On introduit la fonction :

gR(z) :=
f(z)∏

|an|⩽R

(
1− z

an

) .
Montrer qu’il existe un ouvert ω ⊃ DR(0) et une fonction holomorphe hR ∈ O(ω) avec
hR(0) = 0 satisfaisant ehR(z) = gR(z).
(k) Montrer qu’en tout point z ∈ ω ⊃ DR, on a :

Q(κ+1)(z) = h
(κ+1)
R (z) +

∑
|an|>R

κ!

(an − z)κ+1
.

Indication: On admettra, sans chercher à la justifier, la dérivabilité terme à terme.
(l) Montrer que pour tout z ∈ C avec |z| ⩽ 2 R, on a :∣∣gR(z)

∣∣ ⩽ C e(2 R)ρ .

(m) Montrer que pour tout z ∈ Dr avec 0 ⩽ r < R, on a :∣∣h(κ+1)
R (z)

∣∣ ⩽
2κ+3 (κ+ 1)! R

(R − r)κ+2

[
logC +

(
2 R

)ρ]
.

(n) Démontrer que Q(z) ∈ C[z] est un polynôme de degré ⩽ κ.

Exercice 2. Pour deux rayons quelconques R2 > R1 > 0 et deux autres rayons quelconques
R′2 > R′1 > 0, on introduit dans l’espace des z = x+ i y et dans l’espace des z′ = x′ + i y′

les anneaux ouverts :

AR1,R2 :=
{
z ∈ C : R1 < |z| < R2

}
et A′R′

1,R
′
2
:=

{
z′ ∈ C : R′1 < |z′| < R′2

}
.

Les anneaux fermés où les ‘<’ sont remplacés par des ‘⩽’ seront notés AR1,R2 et A′R′
1,R

′
2
.

Grâce au biholomorphisme z 7−→ z
R1

de C∗ et grâce à z′ 7−→ z′

R′
1
, on se ramène à R1 = 1

et à R′1 = 1, et on note alors R := R2

R1
> 1 et R′ :=

R′
2

R′
1
> 1.

L’objectif est d’établir qu’un anneau A1,R est biholomorphe à un autre anneau A′1,R′ si et
seulement si R′ = R.

On se ramène évidemment à R′ ⩾ R > 1, et on suppose donc qu’il existe un biho-
lomorphisme f : A1,R

∼−→ A′1,R′ , d’inverse holomorphe A1,R
∼←− A′1,R′ : f−1. On le note

z 7−→ f(z) = z′ et on note son inverse z = f−1(z′)←− z′.
(a) Dans l’espace d’arrivée, soient des rayons intermédiaires quelconques 1 < P′ < Q′ <
R′. Montrer que l’ensemble :

KP′,Q′ :=
{
z ∈ A1,R : P′ ⩽ |f(z)| ⩽ Q′

}
est un compact de l’ouvert A1,R. Indication: Penser à f−1.
(b) En notant Cr = {z ∈ C : |z| = r}, on introduit les deux distances strictement posi-
tives :

d := dist
(
C1, KP′,Q′

)
> 0 et e := dist

(
CR, KP′,Q′

)
> 0,

puis on abrège :

D := 1 + d et E := R − e.
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Sur une figure de qualité, représenter précisément A1,R, f , A′1,R′ , f−1, A′P′,Q′ , KP′,Q′ , et aussi,
mais dans une couleur distinctive, A1,D, AE,R.
(c) On considère l’application réelle |f | : A1,R −→ ]1, R′[ définie par z 7−→ |f(z)|, plus
simple à étudier que f . Montrer que l’ensemble :

|f |
(
A1,D

)
=

{
|f(z)| ∈ R+ : 1 < |z| < D

}
,

est un intervalle ouvert connexe non vide, contenu ou bien dans ]1, P′[, ou bien dans ]Q′, R′[.
(d) * Montrer que :

lim
|z|→1

z ∈ A1,R

∣∣f(z)∣∣
existe, et vaut ou bien 1, ou bien R′. Indication: Quand |f |

(
A1,D

)
⊂ ]1, P′[, montrer que cette

limite vaut 1.
(e) Après un changement éventuel d’application f 7−→ R′

f
qui échange 1 ←→ R′, on se

ramène à :
lim
|z|→1

z ∈ A1,R

∣∣f(z)∣∣ = 1.

Montrer qu’on a alors :
lim
|z|→R

z ∈ A1,R

∣∣f(z)∣∣ = R′,

et conclure que |f | se prolonge par continuité à l’anneau fermé A1,R.
(f) On suppose temporairement pour simplifier que R′ = Rn pour un certain entier n ⩾ 1.
On introduit la fonction g : A1,R −→ C définie par :

g(z) = z−n f(z).

Montrer qu’il existe une constante β ∈ R telle que :

g(z) = eiβ (∀ z ∈A1,R).

(g) En déduire que n = 1, et donc, que R′ = R.
(h) On traite maintenant le cas général où R′ ⩾ R > 1 n’est pas forcément égal à une
puissance Rn. On introduit :

p :=
log R′

log R
et ϕ(z) :=

|f(z)|
|z|p

(∀ z ∈A1,R).

L’objectif est de démontrer que ϕ(z) ⩽ 1 sur A1,R. Que vaut ϕ
∣∣
∂A1,R

? On suppose par
l’absurde qu’il existe w ∈ A1,R avec :

max
z ∈A1,R

ϕ(z) = ϕ(w) > 1.

Soit le demi-anneau ouvert :
Cw := D+

iw ∩ A1,R,

où D+
iw est le demi-plan ouvert contenant w qui est bordé par la droite Diw engendrée par

l’origine 0 et par iw, de telle sorte que :

max
A1,R

ϕ = max
Cw

ϕ = ϕ(w).
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Dresser une figure contenant 0, A1,R, w, iw, Diw, D+
iw, Cw, puis, justifier intuitivement la

simple connexité de Cw.
(i) Montrer qu’il existe une fonction holomorphe g ∈ O

(
Cw

)
telle que

∣∣g(z)∣∣ = |z|−p pour
tout z ∈ Cw.
(j) Montrer que ϕ(z) ⩽ 1 sur A1,R. Indication: Dériver une contradiction en examinant ce qui
se passe sur ∂A1,R ∩ ∂Cw.
(k) Modifier

/
adapter les raisonnements pour démontrer symétriquement que ϕ ⩾ 1.

(l) Soit maintenant log z la détermination principale du logarithme, fonction holomorphe
sur C\R− satisfaisant log 1 = 0. Montrer que la fonction :

h(z) := e−p log z f(z)

est holomorphe dans A1,R

∖
R−, continue sur A1,R

∖
R− et qu’elle est de module constant∣∣h(z)∣∣ ≡ 1.

(m) Montrer que h est constante sur A1,R

∖
R−.

(n) Soit un point quelconque z0 ∈ A1,R ∩ R−. On note A±1,R := A1,R ∩
{
± Im z > 0

}
. En

comparant les deux limites :

lim
z → z0

z ∈ A−
1,R

h(z) avec lim
z → z0

z ∈ A+
1,R

h(z),

montrer que p ∈ Z.
(o) Conclure.
(p) Déterminer tous les biholomorphismes f : A1,R

∼−→ A1,R.
(q) Existe-t-il une application holomorphe surjective D −→ C?
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5. Examen 5

Exercice 1. On introduit les deux fonctions définies pour z ∈ C\Z :

f(z) :=
π2

(sin πz)2
et g(z) :=

∞∑
n=−∞

1

(n− z)2
.

(a) Justifier que f est holomorphe dans C\Z.
(b) Montrer que g est holomorphe dans C\Z. Indication: Avec N ⩾ 1 entier, décomposer :

g(z) =
∑
|n|⩽N

1

(n− z)2
+

∑
|n|⩾N+1

1

(n− z)2
,

et en supposant |z| < N, majorer la deuxième somme par une série normale convergente.
(c) Montrer que f et g ont des pôles d’ordre 2 en z = 0, puis déterminer leurs parties
singulières a−2

z2
+ a−1

z
et b−2

z2
+ b−1

z
dans leurs développements de Laurent respectifs. Indication:

Observer que f est paire.
(d) Justifier que f et g sont 1-périodiques.
(e) Montrer que la fonction h := f − g se prolonge en une fonction holomorphe entière et
qu’elle est 1-périodique.
(f) On introduit le fermé :

Π :=
{
z ∈ C : − 1

2
⩽ Re z ⩽ 1

2
, |Im z| ⩾ 1

}
.

Dessiner Π soigneusement.

(g) Établir que f et g sont bornées en module sur Π.
(h) Montrer que h est bornée sur C, puis qu’elle est constante.
(i) Montrer que :

lim
y→∞

f
(
i y

)
= 0 = lim

y→∞
g
(
i y

)
.

(j) En effectuant la synthèse des questions qui précèdent, établir la formule, belle :

π2(
sin (π z)

)2 =
∞∑

n=−∞

1

(n− z)2
. (∀ z ∈C\Z).

(k) En déduire la valeur exacte de :
∞∑
n=1

1

n2
.
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Exercice 2. Soit Γ ⊂ C un contour C 1
pm de Jordan, et soit Ω ⊃ Γ ∪ Γint un ouvert qui

le contient ainsi que son domaine intérieur Γint. On suppose données deux fonctions holo-
morphes f, g ∈ O(Ω) qui satisfont partout sur ce contour l’inégalité :

|g(z)| < |f(z)| (∀ z ∈Γ).

On envisage alors la fonction f + g comme une « perturbation » de f .
(a) On introduit la famille à un paramètre réel t ∈ [0, 1] de fonctions holomorphes ft(z) :=
f(z) + t g(z) dans Ω. Montrer que la fonction :

N(t) :=
1

2iπ

∫
Γ

f ′t(z)

ft(z)
dz

est bien définie et qu’elle est continue de [0, 1] à valeurs dans C.
(b) Quelles valeurs peut prendre alors N(t)? Indication: Sans chercher à reconstituer une
démonstration, justifier la réponse en une ou deux lignes par un simple appel au cours.
(c) Montrer, avec multiplicités, l’égalité :

# zéros
(
f + g

)
= # zéros (f) (dans Γint).

(d) Soit le polynôme P (z) := 3 z15 + 4 z8 + 6 z5 + 19 z4 + 3 z + 2. Montrer que P admet
exactement 4 zéros dans le disque unité {|z| < 1}.
(e) Montrer que P (z) admet exactement 11 zéros dans l’anneau

{
1 < |z| < 2

}
.

Exercice 3. L’objectif est, pour des réels quelconques a, b > 0, d’établir en détail la for-
mule : ∫ ∞

0

log x

(x+ a)2 + b2
dx =

log
√
a2 + b2

b
arctan

b

a
.

(a) Soient des réels δ, ε, R quelconques satisfaisant :

0 < δ < ε < 1 ainsi que max
(
1,
√
a2 + b2

)
< R.

On introduit le cercle cε de centre 0 et de rayon ε, le cercle CR de centre 0 et de rayon R,
ainsi que les deux segments horizontaux :

I+δ,ε,R :=
{
z ∈ C : Im z = δ,

√
ε2 − δ2 ⩽ Re z ⩽

√
R2 − δ2

}
,

I−δ,ε,R :=
{
z ∈ C : Im z = − δ,

√
ε2 − δ2 ⩽ Re z ⩽

√
R2 − δ2

}
.

Enfin, on introduit les deux grands arcs de cercles cδ,ε ⊂ cε et Cδ,R ⊂ CR définis par :

cδ,ε := cε
∖{

Re z > 0, −δ < Im z < δ
}
,

Cδ,R := CR

∖{
Re z > 0, −δ < Im z < δ

}
.

Dessiner très soigneusement le contour de Jordan Γδ,ε en forme de trou de serrure,
orienté dans le sens trigonométrique, que délimitent la succession des quatre courbes Cδ,R,
I−δ,ε,R, cδ,ε, I+δ,ε,R, et signaler l’orientation de chacune de ces courbes sur la figure.

(b) On abrège ρ :=
√
a2 + b2. Montrer que :

− a+ i b = ρ ei φ+ , où φ+ := π − arctan
(
b
a

)
,

− a− i b = ρ ei φ− , où φ− := π + arctan
(
b
a

)
.
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(c) On introduit la fonction :

f(z) :=
[log z]2

(z + a)2 + b2
,

avec une puissance de log z d’une unité supérieure à celle de l’intégrale qui nous intéresse.
Ici, la fonction z 7−→ log z est supposée définie dans C\[0,∞[, être holomorphe dans ce
domaine, avec log (−1) = i π. Calculer les résidus de f aux deux points :

w− := − a− i b et w+ := −a + i b.

Indication: On a donc log r eiθ = log r + i θ pour tout z = r eiθ ∈ C\R+ avec r > 0 et
0 < θ < 2π. On calculera ces résidus en fonction de ρ, φ−, φ+.
(d) Trouver, en fonction de a, b, ρ, la valeur de :∫

Γδ,ε,R

f(z) dz =
π

b

(
4π arctan b

a
− 4i log ρ arctan b

a

)
.

(e) On abrège par A + i B la valeur de cette intégrale. Montrer que :

A + i B =

∫
CR

f(z) dz −
∫ R

ε

[
log x+ 2iπ

]2
(x+ a)2 + b2

dx−
∫
cε

f(z) dz +

∫ R

ε

[
log x

]2
(x+ a)2 + b2

dx.

(f) Soit K ∈ R une constante fixée. Montrer rigoureusement que :

lim
ε→
>
0
lim

R→∞

∫ R

ε

[
log x+ K

]2
(x+ a)2 + b2

dx =

∫ ∞
0

[
log x+ K

]2
(x+ a)2 + b2

dx.

Indication: On pourra utiliser le fait — que l’on justifiera très brièvement — qu’il existe des
constantes 0 < M1,M2,M3 <∞ telles que :[

log x+ K
]2

⩽ M1 + M2 [log x]
2

(∀ 0<x< 1),[
log x+ K

]2
(x+ a)2 + b2

⩽
M3

x
√
x

(∀ 1<x).

(g) Montrer que :

0 = lim
ε→
>
0

∫
cε

f(z) dz.

(h) Montrer que :

0 = lim
R→∞

∫
CR

f(z) dz.

(i) Conclure.
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6. Examen 6

Exercice 1. La fonction de Bessel de 1ère espèce et d’indice 0 est définie par :

J0(z) :=
∞∑
n=0

(−1)n 1

22n (n!)2
z2n.

(a) Déterminer le rayon de convergence de cette série entière. Indication: Utiliser la formule
de D’Alembert ; ou utiliser la formule de Stirling qui fournit un équivalent de n! lorsque
n −→∞.
(b) Montrer que w(z) := J0(z) est solution de l’équation différentielle ordinaire du second
ordre :

0 ≡ z2w′′(z) + z w′(z) + z2w(z).

Exercice 2. Soit C := {z ∈ C : |z| = 1} le cercle unité, parcouru dans le sens trigonomé-
trique.
(a) Calculer, pour n ∈ N quelconque, l’intégrale :∫

C

(
z +

1

z

)2n
dz

z
.

Indication: Utiliser la formule du binôme de Newton.
(b) En déduire les valeurs de :

I2n :=

∫ π

−π
cos2nt dt et J2n :=

∫ π

−π
sin2nt dt.

(c) Trouver les valeurs de :

I2n+1 :=

∫ π

−π
cos2n+1t dt et J2n+1 :=

∫ π

−π
sin2n+1t dt.

Exercice 3. [Théorème des trois cercles de Hadamard] Soit f une fonction holomorphe
dans un ouvert connexe Ω ⊂ C qui contient un anneau fermé :

Ar,R :=
{
z ∈ C : r ⩽ |z| ⩽ R

}
⊂ Ω,

où 0 < r < R sont deux rayons positifs fixés. Pour ρ ∈ [r, R] quelconque, on note :

Mf (ρ) := max
|z|=ρ

∣∣f(z)∣∣.
(a) Après avoir dressé une figure soignée, pour ρ fixé avec r ⩽ ρ ⩽ R, montrer qu’il existe
θ ∈ [0, 1] unique tel que :

ρ = rθ R1−θ,

et donner la valeur explicite de θ.
(b) Montrer, pour tous p, q ∈ Z avec q ⩾ 1 que l’on a :

ρpMf (ρ)
q ⩽ max

{
rpMf (r)

q, RpMf (R)q
}
.
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(c) En déduire, pour tout α ∈ R, que l’on a :

ραMf (ρ) ⩽ max
{
rαMf (r), RαMf (R)

}
.

(d) En déduire que :
Mf (ρ) ⩽ Mf (r)

θMf (R)1−θ (∀ ρ avec r⩽ ρ⩽ R).

(e) Interpréter le résultat obtenu en termes de fonctions convexes.

Exercice 4. Pour un paramètre réel t ∈ R, l’objectif de cet exercice est de déterminer la
limite, quand R −→∞, des intégrales :

IR(t) :=

∫ R

−R

sinx

x
eit x dx.

(a) On introduit la fonction méromorphe ft(z) := sin z
z
eitz. Vérifier que f ∈ O(C\{0}),

puis montrer que f ∈ O(C) est holomorphe entière.
(b) Pour R > 1 quelconque, soit le segment [−R, R]. Soit aussi βR la courbe orientée,
constituée des trois morceaux : le segment [−R,−1] ; le demi-cercle unité inférieur, i.e.
situé sous l’axe des abscisses, orienté dans le sens trigonométrique, contenant −1, −i, 1 ;
le segment [1, R]. Dessiner très soigneusement [−R, R], 0 ∈ C, βR, −R, −1, −i, 1, R.
(c) Montrer l’égalité : ∫

[−R,R]

ft(z) dz =

∫
βR

ft(z) dz.

(d) Pour s ∈ R, on pose gs(z) := 1
2i

eisz

z
. Vérifier que :

IR(t) = JR(t+ 1)− JR(t− 1) en posant JR(s) :=

∫
βR

gs(z) dz.

(e) On introduit les deux courbes :

γ+R := demi-cercle supérieur centré en 0 de rayon R orienté positivement contenant R, i R, − R,

γ−R := demi-cercle inférieur centré en 0 de rayon R orienté négativement contenant R, −i R, − R.

Exécuter très soigneusement une nouvelle figure complète, contenant tous les élément pré-
cédents ainsi que γ−R , −i R, γ+R , i R.
(f) Montrer que :

JR(s) =
1

2

∫ 2π

π

ei s R eiθ dθ.

(g) Calculer Resgs(0).
(h) Montrer que :

JR(s) = π − 1

2

∫ π

0

ei s R eiθ dθ.

(i) Montrer que pour tout s < 0, on a :

0 = lim
R→∞

∫ 2π

π

ei s R eiθ dθ.

Indication: Utiliser un théorème expéditif du cours d’Intégration.
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(j) Montrer que :

lim
R→∞

JR(s) =


π lorsque s > 0,

π/2 pour s = 0,

0 lorsque s < 0.

(k) En déduire les valeurs recherchées :

lim
R→∞

∫ R

−R

sinx

x
eitx dx =


π lorsque |t| < 1,

π/2 pour t = −1, 1,
0 lorsque |t| > 1.

(l) Montrer qu’il existe une fonction holomorphe f(z) définie au voisinage de 0 ∈ C telle
que z2 f(z)2 = sin (z2).

Exercice 5. [Produits de Blaschke finis] L’objectif de cet exercice est de décrire toutes
les fonctions holomorphes sur le disque unité D = D1(0) = {|z| < 1}, continues sur
sa fermeture D, et dont le module prend une valeur constante au bord, sur le cercle unité
∂D = {|z| = 1}.
(a) Plus généralement, soit Ω ⊂ C un ouvert connexe borné non vide, et soit h ∈ O(Ω) ∩
C 0(Ω) une fonction holomorphe dans Ω et continue jusqu’au bord ∂Ω = Ω\Ω, dont le
module |h(ζ)| ≡ a ∈ R+ est constant pour tout ζ ∈ ∂Ω. Quand a = 0, justifier que
h(z) ≡ 0 dans Ω ∪ ∂Ω.
(b) On suppose dorénavant que le module |h(ζ)| ≡ a ∈ R∗+ est constant non nul sur le bord
pour tout ζ ∈ ∂Ω. Quand h(z) ̸= 0 pour tout z ∈ Ω, montrer que |h(z)| ≡ a est constant
partout, pour tout z ∈ Ω ∪ Ω.
Indication: Penser à 1

h(z)
.

(c) Sous l’hypothèse de la Question (b), montrer que h(z) ≡ µ ∈ C∗ est alors constante,
partout dans Ω ∪ ∂Ω.
(d) En supposant que h est non constante dans Ω, toujours avec

∣∣h∣∣
∂Ω

constant, déduire
que h admet alors (au moins) un zéro dans Ω.
(e) Soit donc une fonction f ∈ O(D) ∩ C 0(D) dont le module est constant sur ∂D. En
déduire que f est ou bien constante, ou bien admet une factorisation de la forme :

f(z) =
(
z − α1

)m1 · · ·
(
z − αp

)mp
g(z),

où p ⩾ 1 est entier, où α1, . . . , αp ∈ D sont mutuellement distincts, où m1, . . . ,mp ⩾ 1
sont entiers, et où g ∈ O(D,C∗) est une fonction holomorphe jamais nulle dans D. Indication:

Justifier, lorsque f est non constante, qu’elle n’a qu’un nombre fini de zéros dans D. Dresser
une figure parlante.
(f) On supppose dorénavant que f n’est pas constante. Soit α ∈ D, et soit la fonction-type :

ϕα(z) :=
z − α
1− αz

.

Montrer que
∣∣ϕα(z)

∣∣ ≡ 1 sur le cercle unité {|z| = 1}.
(g) Soit la fonction :

h(z) := f(z)
∏

1⩽i⩽p

1

(ϕαi
(z))mi

.
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Montrer que h définit une fonction holomorphe dans D dont le module |h(z)| ≡ c ∈ R∗+
est constant non nul sur le cercle unité ∂D.
(h) En déduire qu’il existe une constante λ ∈ C∗ telle que :

f(z) ≡ λ
∏

1⩽i⩽p

( z − αi

1− αiz

)mi

(∀ z ∈D).

(i) Trouver toutes les fonctions holomorphes dans le plan complexe C dont le module est
constant sur le cercle unité.

Exercice 6. [Théorème de Gauss-Lucas] On rappelle que l’enveloppe convexe d’un en-
semble fini Ew :=

{
w1, . . . , wL

}
de points wℓ ∈ C avec 1 ⩽ ℓ ⩽ L est définie comme :

Êw :=
{
λ1w1 + · · ·+ λL wL : 0 ⩽ λ1, . . . , λL ⩽ 1, λ1 + · · ·+ λL = 1

}
.

Soit un polynôme holomorphe P (z) = anz
n+ · · ·+a1z+a0 de degré n ⩾ 1, donc avec

an ̸= 0, et soient z1, . . . , zn ses zéros, comptés avec multiplicités.
L’objectif est d’établir que les zéros w1, . . . , wn−1 de son polynôme dérivé P ′(z) =

nanz
n−1 + · · ·+ a1 sont tous situés dans l’enveloppe convexe des zéros z1, . . . , zn.

(a) Pour un entier quelconque 1 ⩽ j ⩽ n − 1, si wj ̸= z1, . . . , zn n’est pas l’un des zéros
de P (z), établir la formule :

0 =
n∑

i=1

wj − zi
|wj − zi|2

.

Indication: Décomposer P ′(z)
P (z)

en élément simples et obtenir 1
z−z1 + · · ·+

1
z−zn .

(b) Ré-écrire cette identité algébrique de manière à conclure. Indication: Trouver λ1, . . . , λn.
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7. Examen 7

Exercice 1. Dans C, soient n ⩾ 1 points distincts z1, z2, . . . , zn et soit un cercle C ⊂ C
dont le disque intérieur ∆ contient tous ces zi, pour i = 1, . . . , n. Soit le polynôme :

p(z) :=
(
z − z1

) (
z − z2

)
· · ·

(
z − zn

)
,

et soit une fonction f ∈ O(Ω) holomorphe dans un ouvert Ω ⊃ ∆ ∪ C.
(a) Montrer que :

P (z) :=
1

2iπ

∫
C

f(w)

p(w)

p(w)− p(z)
w − z

dw,

satisfait P (zi) = f(zi) pour i = 1, . . . , n.
(b) Montrer que P (z) ∈ Cn−1[z] est un polynôme de degré ⩽ n− 1.
(c) On fixe un rayon R > 0. Montrer qu’il existe un entier N(R)≫ 1 assez grand pour que,
quel que soit n ⩾ N(R), le polynôme :

Pn(z) := 1 + z +
z2

2!
+ · · ·+ zn

n!
,

n’ait aucun zéro dans le disque fermé
{
|z| ⩽ R

}
.

(d) Soit Ω un ouvert connexe borné non vide dans C, et soit une fonction holomorphe
f ∈ O(Ω) ∩ C 0

(
Ω ∪ ∂Ω

)
continue jusqu’au bord de l’ouvert, qui satisfait |f(ζ)| = 1

pour tout ζ ∈ ∂Ω. Montrer que, ou bien f possède au moins un zéro a ∈ Ω, ou bien f est
constante.
(e) On suppose maintenant Ω simplement connexe, à bord ∂Ω de classe C 1 qui est un
contour de Jordan, toujours avec |f(ζ)| = 1 sur ∂Ω. Ensuite, on suppose que f possède un
unique pôle simple a ∈ Ω. Montrer que toute valeur w ∈ C avec |w| > 1 est prise par f(z)
avec z ∈ Ω, une et une seule fois.

Exercice 2. Soit une fonction holomorphe f ∈ O(C) avec f(0) = 1, qui est de type
exponentiel minimal, au sens où :

∀ ε > 0 ∃Cε < ∞ tel que
(∣∣f(z)∣∣ ⩽ Cε e

ε |z| ∀ z ∈ C
)
.

Soient {an}∞n=1 les zéros de f , supposés en nombre infini (dénombrable), répétés avec
multiplicités, ordonnés par modules |an| ⩽ |an+1| croissants.

On suppose de plus que :
∞∑
n=1

1

|an|
< ∞.

(a) Montrer que le produit infni
∏∞

n=1

(
1 − z

an

)
converge absolument sur tout compact

K ⊂ C, vers une fonction holomorphe entière.
(b) Montrer que z 7−→

∏∞
n=1

(
1− z

an

)
est de type exponentiel minimal. Indication: Utiliser

1 + x ⩽ ex, pour x ∈ R+.
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(c) L’objectif est maintenant d’établir que f(z) ?
=

∏∞
n=1

(
1− z

an

)
s’identifie à ce produit

infini, sans aucun facteur supplémentaire, toujours avec f ∈ O(C) de type exponentiel
minimal, satisfaisant f(0) = 1, et ayant une infnité de zéros {an}∞n=1.

Montrer qu’il existe une fonction holomorphe entière g ∈ O(C) telle que :

f(z) = eg(z)
∞∏
n=1

(
1− z

an

)
.

(d) Pour r > 0 fixé, on découpe :

f(z) = eg(z)
∏
|an|⩽2r

(
1− z

an

) ∏
2r<|an|

(
1− z

an

)
.

Montrer, pour z ∈ C avec |z| = r, la majoration :∣∣∣∣∣ f(z)∏
|an|⩽2r

(
1− z

an

)∣∣∣∣∣ ⩽ Cε e
4εr.

Indication: Commencer à raisonner avec |z| = 4 r.
(e) Montrer qu’il existe r(ε) ≫ 1 assez grand afin que, pour tout z ∈ C avec |z| = r ⩾
r(ε), on ait : ∣∣eg(z)∣∣ ⩽ Cε e

5εr.

Indication: Utiliser l’inégalité 1− x ⩾ e−2x, valable pour 0 ⩽ x ⩽ 1
2
.

(f) On note :
Ag(r) := max

θ∈R
Re g

(
r eiθ

)
,

et on développe g(z) =
∑∞

n=1 bn z
n en série entière convergente de rayon infini. Montrer,

pour tout n ⩾ 1, l’inégalité :

bn r
n =

1

π

∫ 2π

0

(
Re g

(
reiθ

)
− Ag(r)

)
e−inθ dθ.

(g) Établir que g(z) ≡ 0, puis conclure.
(h) Soit maintenant h ∈ O(C), avec h(0) = 1, satisfaisant, pour certaines constantes
0 ⩽ A, B <∞ convenables : ∣∣h(z)∣∣ ⩽ A eB |z|.

On suppose h(−z) = h(z) paire, de zéros distincts non nuls ±an, n = 1, 2, 3, . . . , et on
suppose que

∑∞
n=1

1
a2n
<∞. Montrer que :

h(z) =
∞∏
n=1

(
1− z2

a2n

)
(∀ z ∈C).

(i) Obtenir l’identité d’Euler :

sin πz

πz
=

∞∏
n=1

(
1− z2

n2

)
(∀ z ∈C).
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Exercice 3. Soit une fonction holomorphe f : D −→ D non constante. On suppose que
f(0) est réel, avec :

0 < f(0) < 1.

Soit l’application T : D −→ D définie par :

T (w) :=
w − f(0)
1− f(0)w

=: ζ.

(a) Montrer que
∣∣T(f(z))∣∣ < |z|, pour tout z ∈ D.

(b) Calculer l’inverse w = T−1(ζ), après avoir justifié que T : D −→ D est un biholomor-
phisme.
(c) On prend z ∈ D de la forme z = r eiθ de module 0 ⩽ r < 1, et on note son image par
la composée T ◦ f :

T
(
f(z)

)
=: ρ eiφ,

de module 0 ⩽ ρ < 1.
On considère le cercle

{
|ζ| = ρ

}
, et on introduit :

c(ρ) := f0
(1− ρ) (1 + ρ)

(1− f0ρ) (1 + f0 ρ)
,

où on a abrégé f0 := f(0).
Vérifier que 0 < c(ρ) ⩽ f0, puis, montrer que :

T−1
(
ρ eiφ

)
− c(ρ) = ρ

(1− f0) (1 + f0)

(1− f0 ρ) (1 + f0 ρ)

eiφ + f0 ρ

1 + f0 ρ eiφ
.

(d) Montrer que T−1
(
{|ζ| = ρ}

)
est un cercle, que l’on déterminera.

(e) Montrer que ce cercle a pour diamètre le segment
[
T−1(−ρ), T−1(ρ)

]
, et que :

− 1 < T−1(−ρ) ⩽ T−1(ρ) < 1.

(f) Premier cas : on suppose que 0 ⩽ ρ ⩽ f0. Montrer que :

f0 − ρ
1− f0 ρ

⩽
∣∣f(z)∣∣ ⩽

ρ+ f0
1 + f0 ρ

.

(g) Deuxième cas : on suppose que f0 < ρ < 1. Montrer que :∣∣f(z)∣∣ ⩽
ρ+ f0
1 + f0 ρ

.

(h) Toujours avec z = r eiθ ∈ D et avec
∣∣T(f(z))∣∣ = ρ, établir l’inégalité :

f0 − |z|
1− f0 |z|

⩽
∣∣f(z)∣∣ ⩽

f0 + |z|
1 + f0 |z|

.

(i) Sans l’hypothèse 0 < f(0) < 1, montrer que toute application holomorphe f : D −→ D
satisfait la paire d’inégalités :

|f(0)| − |z|
1− |f(0)| · |z|

⩽
∣∣f(z)∣∣ ⩽

|f(0)|+ |z|
1 + |f(0)| · |z|

(∀ z ∈D).
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Exercice 4. L’objectif est de déterminer la valeur exacte de
∫∞
0

sinx2 dx et de∫∞
0

cosx2 dx, avec des techniques d’Analyse Complexe.
(a) Montrer que∞ =

∫∞
0

∣∣sinx2∣∣ dx. Indication: Effectuer le changement de variable u :=
x2.
(b) Pour R > 0 quelconque, on introduit la courbe fermée simple orientée dans le sens
trigonométrique :

ΓR :=
[
0, R

]
∪ arc

(
R, R eiπ/4

)
∪

[
Reiπ/4, 0

]
=: ΓR,1 ∪ ΓR,2 ∪ ΓR,3.

Dessiner ΓR, en indiquant l’orientation des 3 morceaux de son bord, ainsi que son intérieur
ΓR,int.
(c) Que vaut

∫
ΓR
e−z

2
dz ?

(d) Montrer que :

0 = lim
R→∞

R

∫ π/2

0

e−R2 sin t dt.

Indication: Utiliser la minoration sin t ⩾ 2
π
t, valable pour 0 ⩽ t ⩽ π

2
.

(e) En admettant la valeur de
∫∞
0

e−x
2
dx =

√
π
2

, établir que :∫ ∞
0

sinx2 dx =

√
π

2
√
2

=

∫ ∞
0

cosx2 dx.
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8. Examen 8

Exercice 1. On définit la branche (non principale) de la fonction logarithme par :

log r eiθ = log r + i θ,

lorsque r > 0 et −π
2
< θ < 3π

2
.

Pour 0 < r < 1 < R, soient γr et γR les deux demi-cercles fermés de rayons r et R
contenus dans le demi-plan supérieur fermé

{
Im z ⩾ 0

}
, et orientés dans le sens trigono-

métrique positif.
(a) Élaborer une figure complète et soignée incorporant les éléments suivants :
• −R, −1, −r, 0, r, 1, R, ainsi que les quatre courbes orientées [−R,−r], γr, [r, R], γR ;
• i ;
• l’axe de coupure

{
i y : y ∈ R−

}
.

(b) Montrer que :∫ R

r

(log x)2

x2 + 1
dx+

∫
γR

(log z)2

z2 + 1
dz +

∫ −r
−R

(log |x|+ iπ)2

x2 + 1
dx−

∫
γr

(log z)2

z2 + 1
dz = − π

3

4
.

(c) Montrer que :

0 =

∫ ∞
0

log x

x2 + 1
dx.

(d) Montrer que :

0 = lim
R→∞

∫
γR

(log z)2

z2 + 1
dz.

(e) Établir la formule : ∫ ∞
0

(log x)2

x2 + 1
dx =

π3

8
.

Exercice 2. On pose E0(z) := 1− z, et pour p ∈ N⩾1, on pose :

Ep(z) := (1− z) ez+
z2

2
+···+ zp

p ,

et on abrège :
Lp(z) := z + z2

2
+ · · ·+ zp

p
.

(a) Montrer que :
−E ′p(z) = zp eLp(z) =

∑
k⩾p

ak z
k,

avec des coefficients ak ⩾ 0 tous positifs.
(b) Montrer que :

1− Ep(z)

zp+1
=

∞∑
k=0

bk z
k,
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définit une fonction holomorphe entière, i.e. un élément de O(C), avec des coefficients
bk ⩾ 0 tous positifs.
(c) Montrer que :

|z| ⩽ 1 =⇒
∣∣∣∣1− Ep(z)

zp+1

∣∣∣∣ ⩽ 1.

(d) Soit une suite {zn}∞n=1, de points zn ∈ C\{0} pas nécessairement distincts entre eux,
avec |zn| −→ ∞ lorsque n −→∞. On abrège :

rn := |zn| > 0.

Montrer que, pour tout rayon r ⩾ 0 fixé, on a :
∞∑
n=1

( r
rn

)n

< ∞.

(e) On suppose dorénavant donnée une suite {pn}∞n=1 d’entiers pn ∈ N tels que, pour tout
r ⩾ 0 fixé, on a :

∞∑
n=1

( r
rn

)1+pn
< ∞.

Montrer que le produit infini :
∞∏
n=1

Epn

( z
zn

)
,

converge normalement sur les compacts de C, et définit une fonction holomorphe dans C
tout entier.
(f) Maintenant, on suppose que les zn ∈ C\{0} sont mutuellement distincts :

zn1 ̸= zn2 pour n1 ̸= n2.

Montrer qu’il existe une fonction holomorphe entière g ∈ O(C) satisfaisant :
•
{
w ∈ C : g(w) = 0

}
= {zn}∞n=1 ;

• 0 ̸= g′(zm) pour tout m ⩾ 1.
(g) On pose :

fn(z) :=
g(z)

(z − zn) g′(z)
,

Mn := max
|z|⩽ 1

2
|zn|

∣∣fn(z)∣∣.
Établir l’existence de constantes appropriées cn ∈ C telles que :

h(z) :=
∞∑
n=1

wn fn(z) e
cn(z−zn),

constitue une fonction holomorphe entière h ∈ O(C) résolvant le problème d’interpola-
tion :

h(zm) = wm (∀m⩾ 1).
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Exercice 3. Dans un plan C ∋ w, soit la bande B, et dans un plan C ∋ s, soit le demi-plan
droit, définis par :

B :=
{
w ∈ C : − 1 < Rew < 1

}
,

H :=
{
s ∈ C : Re s > 0

}
.

(a) Montrer que l’application :

s := φ(w) := ei
π
2
w,

constitue un biholomorphisme B ∼−→ H .
(b) Soit un disque unité :

∆ :=
{
ζ ∈ C : |ζ| < 1

}
.

Montrer que l’application :

ζ := ψ(s) :=
s− 1

i(s+ 1)
,

constitue un biholomorphisme H ∼−→ ∆.
(c) Montrer que l’application :

ζ := tan π
4
w,

constitue un biholomorphisme B ∼−→ ∆.
(d) On se donne maintenant une application holomorphe f : D −→ B avec f(0) = 0, où
D := {|z| < 1} est un disque unité.

Soit g := ψ ◦ φ ◦ f . Dresser une figure soignée incorporant les éléments suivants :
• D, 0 ∈ D, un élément z ∈ D, l’application f ;
• B, 0 ∈ B, un élément w ∈ B, l’application φ, les points −1 et 1 ;
• H , 1 ∈ H , un élément s ∈ H , l’application ψ ;
• ∆, 0 ∈ ∆, un élément ζ ∈ ∆, l’application g.
(e) Montrer que pour tout rayon 0 ⩽ r < 1, on a :

g
(
{|z| ⩽ r}

)
⊂ {|ζ| ⩽ r}.

(f) Montrer que pour tout rayon 0 < r < 1, l’image inverse :

ψ−1
(
{|ζ| = r}

)
= C 2r

1−r2

(
1+r2

1−r2
)
,

est un cercle dans le plan des s :

• de centre 1+r2

1−r2 ;

• de rayon 2 r
1−r2 ;

• de diamètre le segment
[
1−r
1+r

, 1+r
1−r

]
, contenu dans l’axe réel.

Indication: On pourra poser s = σ + i t.

(g) Vérifier que ψ−1
(
{|ζ| ⩽ r}

)
est le disque D 2 r

1−r2

(
1+r2

1−r2
)

dans le plan Cs, contenu dans
H .
(h) Redessiner la figure de la Question (d), en y ajoutant le cercle {|z| = r}, avec f(Cr),
avec φ

(
f(Cr)

)
, avec ψ

(
φ
(
f(Cr)

))
, avec le cercle C 2 r

1−r2

(
1+r2

1−r2
)
, et avec

{
|ζ| = r

}
.
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(i) Pour tout s ∈ D 2 r
1−r2

(
1+r2

1−r2
)
, montrer que :∣∣Imφ−1(s)

∣∣ ⩽ 2
π
log

1 + r

1− r
.

(j) Montrer que pour tout |z| < 1, toujours avec f : D −→ B satisfaisant f(0) = 0, on a :∣∣Im f(z)
∣∣ ⩽ 2

π
log 1+|z|

1−|z| .

Indication: Observer que φ−1(s) = − i 2
π

(
log |s|+ i arg s

)
, pour s ∈ H avec |arg s| < π

2
.

(k) Montrer que pour tout |z| < 1, toujours avec f : D −→ B holomorphe satisfaisant
f(0) = 0, on a : ∣∣Re f(z)∣∣ ⩽ 4

π
arctan |z|.

Indication: En dessinant une figure soignée, on pourra déterminer l’angle minimal α(r) tel
que :

D 2 r
1−r2

(
1+r2

1−r2
)
⊂

{
s ∈ C : Re s > 0, |arg s| ⩽ α(r)

}
.


