Examens d’Analyse Complexe

Frangois DE MARCAY

Département de Mathématiques d’Orsay
Université Paris-Saclay, France

1. Examen 1

Exercice 1. Soit un ouvert connexe non vide w C C, soit 25 € w, et soit une fonction
[ € O(w\{20}) holomorphe en-dehors de z;. On suppose que f est bornée au voisinage de
20, au sens oll il existe un rayon r > 0 assez petit avec D,.(z9) C w et il existe une constante
0 <M < ootels que:

sup | f(2)] < M.

|z—zg|<T
z# 2

On fixe z; € D,(29) avec 21 # 2.
(a) Dresser une figure illustrative complete et esthétique.
(b) Montrer, pour 0 < € < 1 |21 — 2o}, que pour tout ¢ € C.(z),0na | —z| = 5|21 — 2|

0= |im/ 1) dg.
Ce(20)

e20 (—2

(¢) Montrer que :

(d) Soient les deux points :

21— 20
G=z+tr——-
|21 — 2o
Z1 — 20
CU = 20— T .
‘21 — 20

Soient aussi deux quantités petites 0 < § < € < % |21 — 2p|. On construit le contour I's .
a deux trous de serrure de largeur 2§ qui partent orthogonalement du cercle C,.(zy) en les
deux points (; et (p, avec contournement de z; puis de zj le long de cercles de rayon .

Dresser une nouvelle figure esthétique dans laquelle tous ces éléments apparaissent clai-
rement — couleurs recommandées !

(e) Justifier par un théoréme du cours que :

(f) Montrer que :

_ AR fQo 1 F(©
0= 2T /C’T(ZO) C— 21 dC 2T /Ce(zl) C— 21 i /C'E(ZO) C— 21 dC

1
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(g) Montrer que :
1 )

2i7T Cr(z0) C— 21

f(z1) = dg.

(h) Justifier I’holomorphie dans D,.(zy) de la fonction :

f(©)

z —
Cr(z0) ¢(—z

dc.

(i) Montrer qu’il existe une unique fonction holomorphe f € ¢ (w) telle que ﬂw\ o) = f.

(j) Montrer que tout ce qui précede est encore valable en supposant plus généralement qu’il
existe un exposant ) < v < 1 et une constante 0 < M < oo tels que :

)] < m—

m (VO<|z—z0| < 7).

Exercice 2. Soit un nombre réel a > 0. L’objectif est de calculer, au moyen de la méthode
des résidus, les deux intégrales de Riemann généralisées :

> 1 <
I = / > 2 dx et J = / ;ﬁ dx.
o Tr4a o r24a?
(a) Commencer par justifier I’existence de /.
(b) On introduit la fonction f(z) := 1. Calculer Res;(i a).

(c) Avec R > a, dessiner le contour orienté fermé consistant en le segment [—R, R] suivi du
demi-cercle de rayon R au-dessus de 1’axe réel.

. T d(ReiG)
0= lim / R 4 a2

(d) Montrer que :

(e) Montrer que :

s
I = —.
2a
(f) On choisit la détermination de la fonction logarithme complexe sur :
C\iR_,
définie, pour z = r ¢ avec r > 0 et avec -5 <0< 37“, par log z := logr + 7 6. Sur cet

ouvert C\¢R_, on considere la fonction holomorphe :
log =

9(z) = 5 5

Avec 0 < € < a et avec R > a, dessiner le contour orienté fermé consistant en le
segment [—R, —¢], suivi du demi-cercle de rayon ¢ au-dessus de I’axe réel, suivi du segment
[e, R], suivi du demi-cercle de rayon R au-dessus de 1’axe réel.

(g) Montrer que :

T
J = —loga.
2a &
Indication: Calculer d’abord Res,(ia) en utilisant la valeur de logi, que I’on déterminera

auparavant.
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Exercice 3. Dans un ouvert connexe non vide {2 C C, pour une courbe (fplm (continue)
v: [0,1] — Q fermée (0) = (1) que I'on identifie v = ([0, 1]) a son image, on définit
I’indice de tout point w € C\~y par rapport a -y par I’intégrale :

1 dz
Indﬂ/(w) = % Z—w.
Y

(a) Avec €2 := C, en utilisant deux couleurs différentes, tracer une courbe qui tourne —2
fois autour de 0, puis une autre qui tourne +3 fois.

(b) On introduit, pour ¢ € [0, 1], 1a fonction :

o0 oo [ 704

Calculer la dérivée de t — Vf;)(i)w sur [0, 1].

(¢) Montrer que :

V() —w
d(t) = —— (Vte[o,1]).
() 7(0) —w
(d) Montrer que :
Ind,(w) € Z.

(e) On suppose dorénavant que I’ouvert connexe () est de plus simplement connexe.
D’apres le cours, si w € 2 est un point de référence fixé, cela implique que deux
courbes 7o: [0,1] — Q et 7: [0,1] — Q quelconques 4, (continues) allant de
w = 70(0) = 71(0) & un autre point quelconque y,(1) = 71(1) = z € Q sont toujours
homotopes a travers une famille continue {t — s (t) }S clo.1] de courbes ‘é}m foutes conte-
nues dans ().

Justifier alors que toute fonction holomorphe g € €(€2) possede une primitive G €
0 () avec G' = g.

: 1 4 .
(f) Justifier que pour toute courbe %pm fermée v C (2, ona:

0= /g(z)dz (Vg€ o(Q).
v

Maintenant, soit un ouvert connexe non vide w C (2, soit w € w et soit un rayon
R > 0 tel que Dg(w) C w. Toute fonction holomorphe f € & (w\{w}) en-dehors de w se
développe alors en série de Laurent :

o

f(Z) = Z an(z_w)n’

n=—0o0

normalement convergente sur les compacts de D (w), avec des coefficients donnés par la

formule :
S f©)
n - % Cr(w) (C _ w)nJrl

indépendamment du choix d’un rayon intermédiaire 0 < r < R.

dC (nez),

(g) Avec 0 < r < R fixé, montrer pour tout n < —1 que :

jan] < max [£()] 77"
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(h) Montrer que :

limsup V/]a,| < r.

—o0 <N

(i) Montrer que le rayon de convergence de la série entiere :

o0
E a_pn 4"
n=1

vaut oo.
(j) Montrer que la partie singuliere :
—1

h(z) = Z an (2 —w)"

définit une fonction holomorphe dans C\{w}.
(k) Montrer I’holomorphie dans w de la fonction :

g:=f—he¢e O0Ww).

(I) On suppose maintenant que 1’ouvert connexe et simplement connexe {2 C C contient
un nombre fini L > 1 de points-singularités distincts wq, ..., w, € €, et on considere une
fonction holomorphe :

fe ﬁ(Q\{wl, o ,wL})
en-dehors de ces points, ainsi qu’une courbe ‘Kplm fermée :
fy C Q\{wl, o .. ,’UJL}.

Enfin, on introduit les parties singulieres de f dans certains petits voisinages ouverts wy >

Wy .
-1

he(2) :== Z apn (Z—U)g)n (1<e<L).

n=—oo

Montrer 1’holomorphie partout dans €2 de la fonction :
9(z) = f(z) =(2) = = h(z) € O(Q)

(m) Etablir la formule des résidus homologique :

L/ f(2)dz = Ind,(w) - Resy(w;) + - - - + Ind., (w,) - Resy(wy).

um
Exercice 4. [Sans indications] (a) Pour £ € R, montrer que :

00 6—2i7r§x T ome

(b) Montrer que :

o (T+z2)ntt — 2.4.6---(2n)

/°° da 1-3-5---(2n—1)
m
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2. Examen 2

Exercice 1. Soit D := {¢ € C: |¢| < 1} le disque unité dans C, soit w € D fixé, et soit :

Z—w

(a) Montrer que ¢, € 0(D) N %¢°(D).
(b) Montrer que |g0w(z)} = 1 pour tout |z| = 1, puis que ‘gow(z)| < 1 pour tout z € D, et
enfin que ]gow(z)| < 1 pour tout z € D.

(¢) Soit une suite infinie {zn}:;l de points non nuls z, € D\{0} satisfaisant :

(1—12]) < oo
n=1
On pose :
Fo(z) i Lol 2022 (zeD).

Zn 1 —7Zp2
Pour z € D fixé, montrer que :

1+ |2
|Fu(2) — 1] < 17 (1= |zal)-

Indication: Utiliser, apres 1’avoir justifiée, I’'inégalité
(d) Montrer que le produit infini F'(z) := [[,_, F, (=) converge normalement sur les com-
pacts de D. Indication: On rappelle qu’un produit infini [[)_, F,(z) est dit normalement

convergent sur un compact K C D silasérie >, (F,(z) — 1) est normalement conver-
gente sur /.

(¢) Montrer que |F(z)| < 1 pour tout z € D.
(f) Quel probleme la fonction F'(z) résout-elle ?

1 1
[1—Zpz| > 1—|z]°

(g) Maintenant, soit une fonction holomorphe f: D — D non constante, avec f(0) = 0.
Pour w € D\ {0} non nul, on note :

[ w) = {zeD: f(z) =w}.
On suppose Card f~1(w) = oco.
Justifier que I’on peut écrire :

fHw) = {Z”}:O:P

avec z, € Det:

1 = lim |z,
n—oQ

(h) On pose :
9(2) = vu(f(2)),
Y. Montrer que g(D) C D.

W
1-wz"

en rappelant que ¢,,(z) :=
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(i) Pour N > 1 entier, on pose :

By(z) = H S

1—72,z2

n=1

Montrer qu’il existe hy € (D) telle que :
g(z) = Bx(2) hn(2) (VzeD).

(j) Montrer que pour tout 0 < € < 1 (censé étre arbitrairement proche de 0), il existe un
rayon 0 < r. < 1 (censé étre proche de 1) tel que :

|Bu(z)| > 1—¢ (v |2 =re).

(k) Montrer que |2y (0)] < 1.
() On introduit maintenant la fonction de comptage de Nevanlinna :

Ny(w) == > log—

Montrer que :

1 |Zn|

(m) Montrer que :

(n) Soit maintenant F € ¢(ID), bornée |F(z)] < M < oo pour tout z € D, et non
identiquement nulle F' # 0. Soient {zn}zo:l ses zéros, supposés en nombre infini. On

suppose temporairement que M = 1 et que F'(0) # 0.
Montrer que >, (1 — |z,]) < oo. Indication: Introduire :

() - F)
& = T Tore

(o) Montrer que cela se généralise sans supposer M = 1 et F'(0) # 0.
(p) Interpréter le résultat obtenu en 1’énongant sous la forme d’un théoréme synthétique.

Exercice 2. (a) Montrer que la fonction ((s) = >_°; - de Riemann satisfait, pour s € R
avecs > 1:
= 1
|OgC(S) - Z Z E ms’
peEP m=1 p

Indication: Penser a la formule de produit infini d’Euler, vue en cours.

(b) Justifier que ((s) # 0 pour tout z € C avec Res > 1, puis justifier I’existence et
I’holomorphie d’une fonction s — log ((s) définie dans {Re s > 1} et prenant des valeurs
réelles sur |1, col.
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(c) Montrer que pour tout s € C avec Res > 1, on a encore :

og(s) = >

ms '
peP m=1 p

Indication: Penser au principe d’unicité pour les fonctions holomorphes qui coincident sur un
ensemble ayant un point d’accumulation.

(d) Toujours pour Re s > 1, montrer que :
_¢) _ A
¢(s) £ no

ou A est la fonction de von Mangoldt :

logp lorsque n =p* avecpe P eta > 1,
A(n) =
0 autrement.

(e) Pour ¢ > 1 fixé, en notant comme Riemann s = o + i, on considere la droite réelle
verticale {c +it: —oco <t < oo} orientée du bas vers le haut. Soit I’intégrale dépendant
du parametre a > 0 :
c+ioco s
Ia) = 5 -ﬁﬁ“
C—100
Montrer qu’elle converge. Indication: |a5‘ = a“.

(f) On suppose dorénavant, jusqu’a la Question (j) ci-dessous, que a > 1. Soit la fonction

méromorphe sur C :
S

f(s) = m

Calculer Res;(0), puis Resy(—1).
(g) Avec un rayon R > 1 + c (qui tendra vers I’infini), on considere le contour orienté
I'; consistant en le segment vertical [c — 1R, c+ iR] parcouru du bas vers le haut, suivi du
demi-cercle C; centré en ¢ de rayon R situé a gauche de 1’axe vertical {Re s = ¢}. Dessiner
I'y avec tous les détails possibles.

(h) Trouver la valeur de :
1
— ds = ?.
2T Jpo f(s)ds
(i) Montrer que :

0 = lim f(s)ds.

R—o0 CR_

Indication: Utiliser, apres 1’avoir justifiée, 1’inégalité valable pour tous rayons R > R. > 1
assez grands :
|s(s+1)| > 1ir%

(j) Toujours avec ¢ > 1 fixé, montrer que :

1 /C”OO a’ g 1-1 quand 1<aq,
27 Jolino S(s+1) "o quand 0 < a < 1.

Indication: Changer de demi-cercle, et faire d’abord une figure (notée !).
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(k) On introduit maintenant la fonction psi de Tchebychev :
Y) = Y A),
1<n<x

puis : i
() ::/1 Y(u) du.

Montrer que :
i) = 3 / A(n) Loy (1) dut.
n=1 /1

(I) Montrer que :
Gi(e) = > Am)- (x—n).
1<n<x

A(n)

n

(m) Montrer que pour tout 6 > 0, la série )~
1+6}.
(n) Montrer que :

converge normalement dans {Re 5>

wo =g [ (- ) e

Exercice 3. Soit 7 € C fixé avec Im7 > 0.
(a) Montrer que la fonction Théta de Jacobi définie par :

oo
@T(z) = Z 67L7m27 e2i7rnz (z€0),
n=-—oo
est une fonction holomorphe entiere. Indication: Poser ¢t := Im7 > 0, et observer que pour
< Inl, ona —n?t +2|n||2| < —n? L.
(b) Montrer qu’il existe deux constantes 0 < A, B < oo telles que :
0.(2)| < A€l (V2€C).
(¢) Montrer que la fonction :
irm2e eZiﬂnz
z) = z+ e o
/() ng:* 2imn

est une fonction holomorphe entiere non constante. Indication: Observer que f(r) — o0
lorsque R > x — oo.

(d) Montrer que O, n’est pas identiquement nulle sur C. Indication: Vérifier que f' = ©,.
(e) Montrer que O, (z + m7) = e~imm’T o=2immz Q () pour tout z € C et tout m € Z.
(f) Montrer que O, est une fonction holomorphe enti¢re d’ordre exactement égal a 2.
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3. Examen 3

Exercice 1. On note C' := {z = z 4+ iy € C: 2% + y* = 1} le cercle unité dans C.
L’ objectif est de calculer des intégrales de la forme :

2w
/ R(cost, sin t) dt,
0

ou R est une fraction rationnelle a coefficients réels :

P(z,y)
R(z,y) =
(®3) Q(z,y)
dont le dénominateur Q)(z, y) n’a pas de pole sur C, c’est-a-dire que Q|c 0. A R(z,y),
on associe la fonction :

avec deux polyndomes P(z,y), Q(z,y) € Rlz,y],

1 _r22+1 22-1
= —R( , - )
/) 12 2z 2uz
On rappelle que C' est le bord du disque unité D := {|z| < 1}.

(a) Montrer que :

27
/ R(cost, sint) dt = 2ir Z Res/(zp).
0

z0€D
Indication: Ecrire z = ¢’ sur le cercle unité C.
(b) Pour un parametre réel a > 1, soit I’exemple :
1
R(x = .
(y) = = ;

Déterminer les deux poles z; et 2z, de la fonction f(z) associée, avec |z;| < |z2|. Indication:
Ne pas faire d’erreur de calcul ! z; et 2, sont tous deux imaginaires purs.

(c) Calculer Ress(z1) en fonction de z; et de z,.

27
1 2
/ - gt=
o a-+sint a2 —1

Exercice 2. Soit f: D — C une fonction holomorphe définie sur le disque unité D =
{z € C: |z| < 1} qui est bornée, au sens ol il existe une constante M < oo telle que

(d) Montrer que :

| f (z)‘ < M, pour tout z € . On suppose que f (r ew) converge vers 0 lorsque r =51,
uniformément pour t € [O, 1 [ :

Ve>0 dr.<l1 <r€<r<1 — ‘f(reitﬂge VtE[O,ﬂ).

(a) On introduit la fonction auxiliaire définie par :

7
g(z) = H f(ze_i%ﬂ) (z€D).
k=0
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Vérifier que g € 0(D).
(b) Montrer que :

Ve>0 dr.<1 <r€<r<1 — ‘g(rew)‘ga VHER).

(c) Montrer que g = 0.

(d) Montrer que f = 0.

(e) Tout cela serait-il encore vrai si, pour un entier n > 1 fixé, on supposait que f (r ew)
converge vers 0 lorsque 7 — 1, uniformément pour tout § € [0, = [?

Exercice 3. Dans le plan complexe C, soit un ouvert 2 qui contient le demi-plan supérieur
fermé :

Q> H = {zeC: Imz>0}.

Soit aussi une fonction holomorphe dans cet ouvert :

feo(@\a... al),

en-dehors d’un nombre fini K > 1 de points ay, ..., ax € HT tous contenus dans le demi-
plan supérieur ouvert H" := {Im z > 0}. L’objectif est de démontrer que :

R—o0

lim /R f(z)e®dx = 2im Z Res (f(2)e”, a),
—R k=1

sous I’hypothese que :

Y

= i | i0
0 TLTOOQHaQXW f(re )

et d’appliquer ensuite cette formule générale dans un cas spécifique concret.

(a) Soient deux angles 0 < #; < 6 < m, soit un rayon r; > 0, et soit une fonction h
continue dans le secteur angulaire fermé :

—ry

Sora, = {2€C:r < 2|, 61 <Argz <6y}

. . =Tl
Dessiner soigneusement ce secteur Sy g, .

(b) Sans chercher a la démontrer au moyen d’inégalités, justifier par un dessin accompagné
d’explications éclairantes I’inégalité classique suivante, valable pour tout 0 < 6 < 7 :

2
sinfd > —0.
T

w/2 ]
/ e—rsm@ rdo <
0

(d) Soit une fonction continue h € €° (521792). On introduit, pour tout rayon r > 7y, les
quantités :

(c) Montrer que :

| X

My(r) = max |h(re”)

01<0<02

Y
ainsi que les arcs de cercle :

Cy 0, = {7“ e?: 0, <0< 02}.
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‘ / h(z) e dz

01,09

Montrer que :

< My(r) - .

(e) En déduire que :
0 = lim / f(R ew) e iR e dp.
0

R—00
(f) Conclure, en détaillant précisément tous les arguments, que :

lim /_i f(z)e™dx = 2in ; Res (f(2)e”, a).

R—00

(g) Montrer, pour tout r > 4, que :

1
L+ 2w + oy

ret

< 2,
et ensuite, déterminer les deux racines complexes a et b du polyndme 22 + z + 1.
(h) Montrer que :

/OO - dr = 27Te_\ég(cosl—isin1>
w24z +l T /3 2 2)
Exercice 4. Sur un intervalle compact [a,b] C R avec —0o < a < b < oo, le célebre

Théoreme de Weierstrass stipule que toute fonction continue f € %0([a, b], R) peut étre
approximée a volonté en norme uniforme par de simples polynémes :

Ve>0 3IP=P.(x)€eR[z] telque m[a>l<)] !f(x) — P(z)| < e.
z€|a,

Existe-t-il un résultat similaire en Analyse Complexe? Tout devient 2-dimensionnel !
On va regarder un compact quelconque K C C, éventuellement d’intérieur non vide, et
des fonctions qui sont holomorphes dans un voisinage ouvert 2 O K, éventuellement tres
«resserré » autour de K. Dans ces circonstances, a-t-on :

Vfeo()) Ve>0 3TP(z)eClz] telque m%‘f(z) — P(z)| < e?
ze
Cela serait un résultat remarquable, car les polynomes sont des objets globaux, définis pour

tout z € C.

(a) Soit une série entiere ZZOZO a, 2" a coefficients complexes a,, € C, dont le rayon de
convergence R satisfait :
0 <R < o0

Justifier, pour tout 6 > 0, I’existence d’un (grand) entier N(4) > 1 tel que, pour tout

n > N(d), on ait :
. 1
Vla, < =+56.
R

(b) Soit un compact K C Dy contenu dans le disque ouvert Dy de rayon R centré en
I’origine 0 € C. Vérifier qu’il existe 0 < r < R tel que K C D,.

(¢) En choisissant > ( assez petit pour que :

q = (%4—(5)7’ < 1,
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montrer, pour tout N > N(9), I’inégalité valable quel que soit z € K :

o0
" 1
E an 2
Nn=N

< N —.
ST,
(d) En raisonnant tres précis€ment, toujours avec K C D compact, établir la propriété
attendue :

VfeODy) Ve>0 3IP(z)eClz] telque mea%‘f(z)—P(z)lge.

Exercice 5. Soit Dy le disque de rayon R > 1 centré en 0 € C, et soit un point {; € C' =
0Dy sur le cercle unité, i.e. avec |(y| = 1. L objectif est d’étudier les fonctions méromorphes
f € (De) N O (Dr\{C}) qui ont un unique pdle simple (d’ordre 1) en .

(a) Faire une figure, et justifier que f(z) = >~ a, 2™ se développe a I’origine en une
série entiere qui converge pour |z| < 1.

(b) Montrer qu’il existe une constante non nulle a € C* telle que la fonction auxiliaire :

9(2) == f(z) -

soit holomorphe dans D. Comment appelle-t-on o ?

(c) Montrer que les coefficients b,, du développement en série entiere g(z) = > >, b, 2"
satisfont b,, — 0.

n—oo

An41

(d) Montrer que a,, # 0 a partir d’un certain rang, puis établir que lim 22— = (, et enfin,
n—oo

interpréter intelligemment ce résultat.

Exercice 6. [Sans indications] Sur le cercle unité C' := {|z] = 1}, soient n > 1 points

wy =" . w, =€ avec) <ty <2mpourk =1,...,n.

(a) Trouver (au moins) un point z* = ¢*" € (' satisfaisant :

H ’z*—wk‘ = 1.

1<k<n
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4. Examen 4

Exercice 1. L’objectif ici est de produire une démonstration simplifiée, due a Landau, de
la derniere partie (difficile) de la démonstration du théoréme de factorisation de Hadamard
pour les fonctions entieres d’ordre fini. Des préliminaires sont nécessaires.

(a) Soit un rayon R > 0, soit un ouvert w O ER(O) — Dy, et soit une fonction holomorphe
¢: w — C. On suppose que ‘go(z)| < S < oo pour tout |z| < R et que ¢(0) = 0. Montrer
que :

)] < 212 seB),

Indication: Utiliser @.

(b) Soient encore R > 0 et D Dy un autre ouvert. Pour toute h € & (€2) et tout rayon
intermédiaire 0 < r < R, on note :

M (r) = mix|h(z)‘ et Ap(r) = ‘mﬁx Reh(z).
On note aussi C, := {|z| = r}. On supposera toujours que ~(0) = 0 et que h est non

constante. On admettra la propriété 0 < A,(r) < A,(R) pour 0 < r < R, conséquence
élémentaire du principe du maximum. On introduit :

h(z
olz) = 2Ah(R§ z h(z)’
Vérifier, pour |z| =ret0 < r <R, que:
Re (244(r) — h(z)) > An(r),
et montrer que ¢ est holomorphe dans un voisinage ouvert de Dj.
(c) On décompose en parties réelle et imaginaire h(z) = u(z) + iv(z). Montrer que

|<p(z)‘2 < 1 pour tout |z| < R.
(d) Montrer que :
2A,(R) |2]
|h(z)‘ S Ro
z|
(e) En déduire I’inégalité de Borel-Carathéodory, valable pour tout rayon 0 < r < R :
r+r
M < Ay (R).
W) < T A(R)

(f) Maintenant, on souhaite généraliser cette inégalité aux dérivées de h d’ordre quel-
conque. Soit un rayon intermédiaire quelconque 0 < r < R, et soit z € (), arbitraire.
On pose :

et on introduit :
Cplz) = {C€C: [¢ =2 = p}.

Dresser une figure élégante.
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(g) Montrer que :
4R

R_

max |h(¢)| <

|(—zl=p

T‘Ah(R)'

(h) Montrer que pour tout 0 < < R et tout entier n > 0, on a :

2"+2 plR
(R _ r)n+1

Ap(R).

max ‘h )} <

|z|=r

(i) Maintenant, soit f € ¢(C) une fonction holomorphe entiere avec f(0) = 1 dont I’ordre
de croissance py < oo est fini. Soit k := Ent py, d’ou k < py < Kk + 1. Pour € > 0 assez
petit, en posant p := py + ¢, on aencore K < p < Kk + 1, et il existe par définition une
constante C' > 0 telle que :

}f z ‘ < Cel (Vz€C).

On suppose que f possede un nombre infini de zéros isolés {an} ordonnés par modules
croissants 0 < |a,| < |a,41| et répétés v fois aux zéros d’ordre v > 2. Ainsi, f(z) = 0si
et seulement si z = a, pourunn > 1.

En cours au tableau, on a démontré que :

Z |CL ’nJrl 0.

Ensuite dans le polycopié, en introduisant les facteurs canoniques a exponentielle polyno-
miale de degré « :
S e

Qn an

on a aussi démontré la convergence normale sur les compacts de C du produit infini :

ne:) = [T B2(2).

n=1

Comme f(z) et II(z) ont les mémes zéros, les singularités de £ T )) sont éliminables, cette

fonction n’a aucun zéro, d’ou il découle comme C est simplement connexe que son loga-
rithme existe, et par conséquent on peut écrire :

fz) = €% ﬁ E(Z) = ﬁ 2 et G G
n=1 n=1

au moyen d’une certaine fonction holomorphe entiere ) € &(C).

En admettant ces résultats, la fin difficile de la démonstration du Théoreme de facto-
risation de Hadamard consistait a établir que Q)(z) € C|z] est alors nécessairement un
polyndme de degré < k. Les arguments qui suivent, dus a Landau et tirés du traité de
Titchmarsh, offrent une alternative élégante a la démonstration originale vue en cours.

Justifier trés rapidement la formule dans C\ {a, } "~ | :

i v (e Rl e i)
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(j) Soit un rayon arbitraire R > 0. On introduit la fonction :

I (O N
gR( ) . H|an\<R (1 B i)

Montrer qu’il existe un ouvert w O Dy (0) et une fonction holomorphe hy € €(w) avec
hx(0) = 0 satisfaisant e"*(*) = g (z).
(k) Montrer qu’en tout point z € w O Dy, ona:

Q(“+1>(z) — hl(fﬂ)(z)—}— Z

|an|>R

k!
(a'n _ Z)H+1 :

Indication: On admettra, sans chercher a la justifier, la dérivabilité terme a terme.
(I) Montrer que pour tout z € C avec |z| < 2R,ona:

|gR(2){ < C el

(m) Montrer que pour tout z € D, avec0 < r < R,ona:
2513 () + 1)IR
(R —r)rt2

WS ()| < log C' + (2r)”].

(n) Démontrer que Q)(z) € C|z] est un polyndme de degré < k.

Exercice 2. Pour deux rayons quelconques Ry > R; > () et deux autres rayons quelconques
R), > R} > 0, on introduit dans ’espace des z = = + i y et dans I’espace des 2’ = 2’ + iy’
les anneaux ouverts :

Agir, = {7 €C: Ry <|2| <R} et v, = 17 €C R <[] <RG}
Z N\ 3 9 z 3 ’ 4 A y
Les anneaux fermés ou les ‘<’ sont remplacés par des ‘<’ seront notés Ag, ¢, et AR’l R)*
Grace au biholomorphisme z — % de C* et grice a 2/ — lf—,’, on se ramene a Ry = 1
1
etaR; =1, etonnote alors R := {2 > 1 etR' := 2> 1.
1

L’ objectif est d’établir qu’un anneau A ; est biholomorphe a un autre anneau A'LR, si et
seulement si R" = R.

On se ramene évidemment a R > R > 1, et on suppose donc qu’il existe un biho-

lomorphisme f: A;x — A, d’inverse holomorphe Ay <— A, : f~'. On le note

2+ f(z) = 2’ et on note son inverse z = f~1(2) +— 2.
(a) Dans I’espace d’arrivée, soient des rayons intermédiaires quelconques 1 < P’ < Q' <
R’. Montrer que 1’ensemble :

Kp/7Q/ = {Z EA]_’R: P/ < ’f(Z)’ g Q/}
est un compact de I’ouvert A; . Indication: Penser a fL

(b) En notant C,, = {z € C: |z| = r}, on introduit les deux distances strictement posi-
tives :

d = dist (C1, Kpg) > 0 et e := dist (Cx, Ky o) > 0,
puis on abrege :

D:=1+d et E ;= R —e.
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- pe pd pd - 2z p— _/ -
Sur une figure de qualité, représenter précisément A , f, A’LR,, LA, o Ko, etaussi,
mais dans une couleur distinctive, A; ,, Ag z.
(c) On considere I’application réelle |f|: A; x — ]1,R’[ définie par z — |f(z)], plus
simple a étudier que f. Montrer que 1’ensemble :

[fI(A1p) = {If(z)| € Rs: 1 < |2] <D},

est un intervalle ouvert connexe non vide, contenu ou bien dans |1, P’[, ou bien dans |Q’, R[.
(d) * Montrer que :

/
7Q’

fim [ £(2)]

existe, et vaut ou bien 1, ou bien R’. Indication: Quand | f|(A;,) C ]1,P'[, montrer que cette

limite vaut 1.
Rl

(e) Apres un changement éventuel d’application f — % qui échange 1 «— R/, on se

~ N 7
ramene a :
lim |f(z)} = 1.
|z|—1
zE€A R
Montrer qu’on a alors :
lim |f(z)| = R
|z| =R
zE€ALR

et conclure que | f| se prolonge par continuité a 1’anneau fermé A, .

(f) On suppose temporairement pour simplifier que R’ = R™ pour un certain entier n > 1.
On introduit la fonction g: A; ; — C définie par :

9(z) = 27" f(2).
Montrer qu’il existe une constante 3 € R telle que :

9(z) = e’ (VzEALR).

(g) En déduire que n = 1, et donc, que R’ = R.

(h) On traite maintenant le cas général ou R” > R > 1 n’est pas forcément égal a une
puissance R". On introduit :
_ logR’

p = og R et o(z) = (Vz€ALR).

L objectif est de démontrer que ¢(z) < 1 sur KLR. Que vaut gzﬁ’a AL ? On suppose par
I’absurde qu’il existe w € A; x avec :

max @(z) = ¢(w) > 1.
z€AR
Soit le demi-anneau ouvert :
C’LU = D;’;ﬂ mA17R7

ot D est le demi-plan ouvert contenant w qui est bordé par la droite D;,, engendrée par
I’origine 0 et par 7w, de telle sorte que :

max ¢ = max ¢ = ¢(w).

A r C
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+

w?

Dresser une figure contenant 0, A4 , w, iw, D;y,, D
simple connexité de C,,.

C.,, puis, justifier intuitivement la

(i) Montrer qu’il existe une fonction holomorphe g € &'(C.,) telle que |g(z)| = ||~ pour
tout z € C,,.

(j) Montrer que ¢(z) < 1 sur KLR. Indication: Dériver une contradiction en examinant ce qui
se passe sur 0A; x N IC,,.

(k) Modifier / adapter les raisonnements pour démontrer symétriquement que ¢ > 1.

(I) Soit maintenant log z la détermination principale du logarithme, fonction holomorphe
sur C\R_ satisfaisant log 1 = 0. Montrer que la fonction :

h(z) = e PO f(2)
est holomorphe dans ALR\]R_, continue sur ZLR\R_ et qu’elle est de module constant
|h(z)| = 1.
(m) Montrer que h est constante sur ZLR \]R_.

(n) Soit un point quelconque zp € A; x N R_. On note AfR =Ax N { +Imz > O}. En
comparant les deux limites :

ZIer;O h(z) avec ZILn;O h(z),
ZEA;,R ZGAIL,R

montrer que p € Z.

(o) Conclure.

(p) Déterminer tous les biholomorphismes f: A; x — Aj .
(q) Existe-t-il une application holomorphe surjective D — C?
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5. Examen 5

Exercice 1. On introduit les deux fonctions définies pour z € C\Z :
72 - 1
1) = G c o) = Y
(a) Justifier que f est holomorphe dans C\Z.
(b) Montrer que g est holomorphe dans C\Z. Indication: Avec N > 1 entier, décomposer :

(2) 1 . 1
g z = _— _—
2 (n —2)? 2 (n—2)*
[n|<N |n|>N+1
et en supposant |z| < N, majorer la deuxieme somme par une série normale convergente.

(c) Montrer que f et g ont des poles d’ordre 2 en z = 0, puis déterminer leurs parties
singulieres “3* 4-“* et 62*—22 + b’Tl dans leurs développements de Laurent respectifs. Indication:
Observer que f est paire.

(d) Justifier que f et g sont 1-périodiques.

(e) Montrer que la fonction h := f — g se prolonge en une fonction holomorphe enticre et
qu’elle est 1-périodique.

(f) On introduit le fermé :

II:= {ZG(C: - <Rez<%, |Imz|>1}.

1
2
Dessiner II soigneusement.

(g) Etablir que f et ¢ sont bornées en module sur IT.

(h) Montrer que & est bornée sur C, puis qu’elle est constante.
(i) Montrer que :

lim f(zy) =0 = yILn;Og(zy).

Y—00

(j) En effectuant la synthese des questions qui précedent, établir la formule, belle :

2 [e.e]

s 1
—(sin(wz))2 - nz_:oo T (VzeC\2).

(k) En déduire la valeur exacte de :

[\

=1
P

n=1
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Exercice 2. Soit I' C C un contour ‘Kplm de Jordan, et soit 2 D I' U I['j;; un ouvert qui
le contient ainsi que son domaine intérieur [';,;. On suppose données deux fonctions holo-
morphes f, g € O(£2) qui satisfont partout sur ce contour I’inégalité :

l9(2)| < [f(2)] (VzeD).

On envisage alors la fonction f 4+ g comme une « perturbation » de f.

(a) On introduit la famille & un parametre réel ¢ € [0, 1] de fonctions holomorphes f;(2) :=
f(z) + t g(z) dans . Montrer que la fonction :

est bien définie et qu’elle est continue de [0, 1] a valeurs dans C.

(b) Quelles valeurs peut prendre alors N(¢) ? Indication: Sans chercher a reconstituer une
démonstration, justifier la réponse en une ou deux lignes par un simple appel au cours.

(c) Montrer, avec multiplicités, 1’égalité :
# zéros (f + g) = # zéros (f) (dans Tpy).

(d) Soit le polyndme P(z) := 32" + 428 + 6 2° + 19 2% + 3 2 + 2. Montrer que P admet
exactement 4 zéros dans le disque unité {|z| < 1}.

(e) Montrer que P(z) admet exactement 11 zéros dans I'anneau {1 < |z| < 2}.

Exercice 3. L’ objectif est, pour des réels quelconques a,b > 0, d’établir en détail la for-
mule :

= = _ arctan-—.
x+a)2—f—b2 i b arcana

/°° log J log v/a? 4 b2
o

(a) Soient des réels 9, €, R quelconques satisfaisant :

0<d<ex<l1 ainsi que max (1, Va? + b%) < R.

On introduit le cercle c. de centre 0 et de rayon ¢, le cercle Cy de centre 0 et de rayon R,
ainsi que les deux segments horizontaux :

5£R = {zE(C Imz =24, Ve2 — 2 <Rez < \/762}
I ={z€C:iImz=—6 Ve? =5 <Rez < VR — 8}
Enfin, on introduit les deux grands arcs de cercles ¢5. C c. et Csx C Cy définis par :
Cse 1= ca\{Rez >0, - 0<Imz< 5},
Csp = C’R\{Rez >0, —0<Imz< (5}.

Dessiner tres soigneusement le contour de Jordan I's. en forme de trou de serrure,
orienté dans le sens trigonométrique, que délimitent la succession des quatre courbes Cj x,
I s Cser 1 T o et signaler I’orientation de chacune de ces courbes sur la figure.

4,e,R?
(b) On abrege p := v/a? + b. Montrer que :
—a+ib = pe'¥t, ol ¢4 = T — arctan (%),

ISHISIESEIS S

—a—ib = pe'¥, ou O ::7T+arctan(

)-
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(¢) On introduit la fonction :

[log =]
z) =
/) (z+a)? + b
avec une puissance de log z d’une unité supérieure a celle de 1’intégrale qui nous intéresse.
Ici, la fonction z —— log z est supposée définie dans C\ [0, o[, étre holomorphe dans ce
domaine, avec log (—1) = i 7. Calculer les résidus de f aux deux points :

w_ = —a—1b et wy = —a +1b.

Indication: On a donc logr e = logr + i 6 pour tout z = re? € C\R, avec r > 0 et
0 < 6 < 2m. On calculera ces résidus en fonction de p, p_, @

(d) Trouver, en fonction de a, b, p, la valeur de :
2)dz = = (4rarctan b — 4i log p arctan 2 |.
b a a
Fé £,R

(e) On abrege par A + ¢ B la valeur de cette intégrale. Montrer que :

. R [Iogw—i—Qm R [|Og$}2
= dz — )d — .
rrim= ) SR / /f ”/s ( *

(x+ a)? +b2 T+ a)? + b2
(f) Soit K € R une constante fixée. Montrer rigoureusement que :
o R [Iog:z:%—K}2 % [Ioga:%—K}Z
lim lim o dr = 5 A
e20 koo [ (x+a)>+b o (x4+a)?>+b

Indication: On pourra utiliser le fait — que I’on justifiera trés brievement — qu’il existe des
constantes 0 < M1, My, M3 < oo telles que :

[Iog:v+K]2 < M; + My [log ]? (Vo<z<1),

[Iog:n%—K}2 _My
(x+a)2+0 = zyx

0= lim / f(2)dz
0= m [ 1t

(V1i<a).

(g) Montrer que :

(h) Montrer que :

(i) Conclure.



6. Examen 6 21

6. Examen 6

Exercice 1. La fonction de Bessel de 1°™ espece et d’indice 0 est définie par :

[e.e]
1
— 1\~ 2n
Jo(z) =) (1) xeei
(a) Déterminer le rayon de convergence de cette série entiere. Indication: Utiliser la formule
de D’ Alembert; ou utiliser la formule de Stirling qui fournit un équivalent de n! lorsque
n —» 00.

n=0

(b) Montrer que w(z) := Jy(2) est solution de 1’équation différentielle ordinaire du second
ordre :

0 = 22w(2) + zw'(2) + 22 w(z).
Exercice 2. Soit C := {z € C: |z| = 1} le cercle unité, parcouru dans le sens trigonomé-
trique.
(a) Calculer, pour n € N quelconque, I’intégrale :

/ < 1 ) 1z

zZ+ - —.
C z y4
Indication: Utiliser la formule du bindme de Newton.
(b) En déduire les valeurs de :

Iy, = / cos*"t dt et Jop 1= / sin?"t dt.
(¢) Trouver les valeurs de :
Ippyr = / cos® 1t dt et Jont1 = / sin?" 1t dt.

Exercice 3. [Théoreme des trois cercles de Hadamard] Soit f une fonction holomorphe
dans un ouvert connexe {2 C C qui contient un anneau fermé :

Ag = {z€C: r<|z| <R} C Q,
ol 0 < r < R sont deux rayons positifs fixés. Pour p € [r, R] quelconque, on note :
M;y(p) = max|f(z)].

|z|=p

(a) Apres avoir dressé une figure soignée, pour p fixé avec r < p < R, montrer qu’il existe
¢ € [0, 1] unique tel que :

et donner la valeur explicite de 6.
(b) Montrer, pour tous p,q € Z avec ¢ > 1 que 'on a :

P’ My(p)? < max {r? My(r)?, R” My(R)?}.
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(c) En déduire, pour tout « € R, que 'on a :
p* My(p) < max {r® Mg(r), R* M;(R)}.

(d) En déduire que :
Mf(p) < Mf(T)er(R)l_g (Vp avec 7 < p<R).

(e) Interpréter le résultat obtenu en termes de fonctions convexes.

Exercice 4. Pour un parametre réel t € R, I’objectif de cet exercice est de déterminer la
limite, quand R — oo, des intégrales :

R
I(t) = / ST gite gy,
—R T
(a) On introduit la fonction méromorphe f;(z) := =02 ¢i*=. Vérifier que f € ¢(C\{0}),
puis montrer que f € ¢(C) est holomorphe entiére.

(b) Pour R > 1 quelconque, soit le segment [—R, R]. Soit aussi J; la courbe orientée,
constituée des trois morceaux : le segment [—R, —1]; le demi-cercle unité inférieur, i.e.
situé sous 1’axe des abscisses, orienté dans le sens trigonométrique, contenant —1, —i, 1;
le segment [1, R|. Dessiner trés soigneusement [—R, R}, 0 € C, fx, —R, —1, —i, 1, R.

(¢) Montrer I’égalité :

/ fi(z)dz = fi(2) dz.
[—R,R] Br

(d) Pour s € R, on pose gs(z) := % % Vérifier que :
L) = Jelt+1) — Ju(t — 1) en posant Juls) = / 0u(2) d.
R
(e) On introduit les deux courbes :
v& := demi-cercle supérieur centré en 0 de rayon R orienté positivement contenant R, i R, — R,
v := demi-cercle inférieur centré en 0 de rayon R orienté négativement contenant R, —¢ R, — R.

Exécuter tres soigneusement une nouvelle figure complete, contenant tous les élément pré-
cédents ainsi que vy, , —iR, V7, i R.
(f) Montrer que :

|
Je(s) = 5/ e R dp.

(g) Calculer Res, (0).
(h) Montrer que :

| Y
Je(s) = m— —/ s} 4.
2 Jo

(i) Montrer que pour tout s < 0,on a:

2T )
0= Iim/ eisRe’ g,

R—00

Indication: Utiliser un théoréme expéditif du cours d’Intégration.
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(j) Montrer que :

s lorsque s > 0,
lim Jx(s) = < /2 pour s =0,
R—00
0 lorsque s < 0.
(k) En déduire les valeurs recherchées :
T lorsque |t < 1,
_ ®sinx
lim ——edy = {7m/2 pour t=—1,1,
R—oo | o X

0 lorsque || > 1.

(1) Montrer qu’il existe une fonction holomorphe f(z) définie au voisinage de 0 € C telle
que 22 f(2)? = sin (2?).

Exercice 5. [Produits de Blaschke finis] L’ objectif de cet exercice est de décrire foutes
les fonctions holomorphes sur le disque unité D = D;(0) = {|z| < 1}, continues sur
sa fermeture D, et dont le module prend une valeur constante au bord, sur le cercle unité
oD = {|z| = 1}.

(a) Plus généralement, soit {2 C C un ouvert connexe borné non vide, et soit h € &(2) N
%€°(2) une fonction holomorphe dans 2 et continue jusqu’au bord 92 = Q\(, dont le
module |A(¢)] = a € Ry est constant pour tout ( € J€2. Quand a = 0, justifier que
h(z) = 0 dans © U 05.

(b) On suppose dorénavant que le module |1 (¢)| = a € R est constant non nul sur le bord
pour tout ¢ € 9. Quand h(z) # 0 pour tout z € Q, montrer que |h(z)| = a est constant

partout, pour tout z € 2 U €.

Indication: Penser & ——.
h(z)

(c) Sous I’hypothése de la Question (b), montrer que h(z) = u € C* est alors constante,
partout dans €2 U 0f).

(d) En supposant que h est non constante dans €, toujours avec ’h| o constant, déduire
que h admet alors (au moins) un zéro dans ().

(e) Soit donc une fonction f € (D) N €°(D) dont le module est constant sur ID. En
déduire que f est ou bien constante, ou bien admet une factorisation de la forme :

m m
fz) = (z—ar)™ - (2= )" g(2),
ou p > 1 est entier, ou a4, ...,a, € I sont mutuellement distincts, ou m;,...,m, > 1
sont entiers, et ol g € (D, C*) est une fonction holomorphe jamais nulle dans ID. Indication:
Justifier, lorsque f est non constante, qu’elle n’a qu’un nombre fini de zéros dans ID. Dresser
une figure parlante.

(f) On supppose dorénavant que f n’est pas constante. Soit o € D, et soit la fonction-type :
ta(2) ==

Montrer que |¢q(z)| = 1 sur le cercle unité {|z| = 1}.

Z—

1—az

(g) Soit la fonction :

ne) = 1) ] W
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Montrer que h définit une fonction holomorphe dans D dont le module |h(z)| = ¢ € R*
est constant non nul sur le cercle unité JD.

(h) En déduire qu’il existe une constante A € C* telle que :

=\ H <1_al'>mi (VzeD).

1<i<p

(i) Trouver toutes les fonctions holomorphes dans le plan complexe C dont le module est
constant sur le cercle unité.

Exercice 6. [Théoreme de Gauss-Lucas] On rappelle que 1’enveloppe convexe d’un en-
semble fini £, := {wl, . ,wL} de points w, € C avec 1 < ¢ < L est définie comme :

o~

E, = {/\1w1+"‘+)\LwL: Og/\h”-u)‘Lgl’ /\1++)\L:1}

Soit un polyndme holomorphe P(z) = a,2" +- - -+ a1z + ag de degré n > 1, donc avec
a, # 0, et soient 2, ..., z, ses zéros, comptés avec mult1p11c1tes.

L’ objectif est d’établir que les zéros wy, ..., w,_1 de son polyndme dérivé P'(z) =
na,z" ! + - .- + a; sont tous situés dans I’enveloppe convexe des zEros z1, . . . , .
(a) Pour un entier quelconque 1 < j < n —1,siw; # z1,..., %, n’est pas 'un des zéros
de P(z), établir la formule :

P(z)
P(z)

(b) Ré-écrire cette identité algébrique de maniere a conclure. Indication: Trouver Ay, ..., A,.

en élément smlples et obtenir —— +--- + 1

z2—2zn '

Indication: Décomposer
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7. Examen 7

Exercice 1. Dans C, soient n > 1 points distincts z1, 2, . . ., 2, et soit un cercle C' C C
dont le disque intérieur A contient tous ces z;, pour ¢ = 1, ..., n. Soit le polyndme :

p(z) = (E=a) (=) - (=),

et soit une fonction f € &'(£2) holomorphe dans un ouvert 2 > AU C.

(a) Montrer que :
/ 1) pu) =262 5,
T 2r (w) w —

satisfait P(z;) = f(z;) pouri = 1,.
(b) Montrer que P(z) € C,,_1[z] estun polynome de degré < n — 1.

(c) On fixe un rayon R > 0. Montrer qu’il existe un entier N(R) >> 1 assez grand pour que,
quel que soit n > N(R), le polynome :
2 n
z

P(2) = 1—|—z—|—§+ gaany

n’ait aucun zéro dans le disque fermé {|z| < R}.

(d) Soit €2 un ouvert connexe borné non vide dans C, et soit une fonction holomorphe
f € 0(Q)NE°(QUIN) continue jusqu’au bord de I’ouvert, qui satisfait | ()| = 1
pour tout { € J€). Montrer que, ou bien f posseéde au moins un zéro a € €2, ou bien f est
constante.

(e) On suppose maintenant {2 simplement connexe, a bord 92 de classe ¢! qui est un
contour de Jordan, toujours avec | f({)| = 1 sur 92. Ensuite, on suppose que f posseéde un
unique pdle simple a € 2. Montrer que toute valeur w € C avec |w| > 1 est prise par f(z)
avec z € €, une et une seule fois.

Exercice 2. Soit une fonction holomorphe f € &(C) avec f(0) = 1, qui est de type
exponentiel minimal, au sens ou :

Ve >0 dC. < > tel que <‘f(z)] < C.eflA Vz € (C).

Soient {a,}>2, les zéros de f, supposés en nombre infini (dénombrable), répétés avec
multiplicités, ordonnés par modules |a,| < |a,1]| croissants.
On suppose de plus que :

)
n=1 |an’

(a) Montrer que le produit infni [[7 ( — ai) converge absolument sur tout compact

K C C, vers une fonction holomorphe entlere
(b) Montrer que z — [[~, (1 — ai) est de type exponentiel minimal. Indication: Utiliser
1+z < e, pourxr € R,
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[e.9]

(c) L’ objectif est maintenant d’établir que f(z) 2 | | ) (1 — i) s’identifie a ce produit
infini, sans aucun facteur supplémentaire, toujours avec f € €(C) de type exponentiel
minimal, satisfaisant f(0) = 1, et ayant une infnité de zéros {a, }3 ;.

Montrer qu’il existe une fonction holomorphe entie¢re g € &'(C) telle que :

f(z) = ) ﬁ (1 - ai)
n=1 n
(d) Pour r > 0 fixé, on découpe :
f(z) = €9 1- = (1—i :
I00-2) I 02

Montrer, pour z € C avec |z| = r, la majoration :

f(Z) <O e4ar
~ 3 .
H\an|<2r (1 o é)
Indication: Commencer a raisonner avec |z| = 4r.

(e) Montrer qu’il existe r(¢) > 1 assez grand afin que, pour tout z € C avec |z| = r >
r(e), on ait :

|6g(z)‘ < Og 6567"
Indication: Utiliser 1’inégalité 1 — z > e~2*, valable pour 0 < = <
(f) On note :

1
5.
Ay(r) = R 0

o(r) max eg(re?),
et on développe g(z) = >~ b, 2" en série entiére convergente de rayon infini. Montrer,
pour tout n > 1, I'inégalité :

1 2w ) )
b,r" = —/ <Reg(re“9) — Ag(r)> e~ M9 qdp.
0

™

(g) Etablir que g(z) = 0, puis conclure.

(h) Soit maintenant h € ¢(C), avec h(0) = 1, satisfaisant, pour certaines constantes
0 < A,B < oo convenables :

h(z)] < A€l

h(z) paire, de zéros distincts non nuls +a,, n = 1,2,3,..., et on
< 00. Montrer que :

h(z) = ﬁ <1 — ;—2> (Vz€C).

On suppose h(—z) =
suppose que » > | =

2
n

(i) Obtenir I’identité d’Euler :

sinmz et z
— H (1 - _2> (VzeC).
Tz n
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Exercice 3. Soit une fonction holomorphe f: D — I non constante. On suppose que
f(0) est réel, avec :

0 < f(0) < 1.
Soit I’application 7': D — DD définie par :
w—f(0) _
1—f0)w

, pour tout z € D.

T(w) =

(a) Montrer que |T(f(2))| < |2

(b) Calculer I’inverse w = T~1((), apres avoir justifié que 7': D — D est un biholomor-
phisme.

(c) On prend z € D de la forme z = r ¢ de module 0 < r < 1, et on note son image par
la composée T'o f :

de module 0 < p < 1.
On considere le cercle {|¢| = p}, et on introduit :

(1-p)(1+p)

c(p) = fo A= 7o) (Lt for)’

ol on a abrégé f, := f(0).
Vérifier que 0 < ¢(p) < fo, puis, montrer que :

(L—fo) A+ fo) e+ fop
(1= fop) X1+ fop) 1+ fopes

(d) Montrer que 7" ({|¢| = p}) est un cercle, que I’on déterminera.

T} (pe¥) —clp) = p

(e) Montrer que ce cercle a pour diametre le segment [T‘l (—p), T71 (p)] ,etque:
—1 < TH=p) < T Hp) < 1.

(f) Premier cas : on suppose que 0 < p < fy. Montrer que :

Jo—p p+ fo
< f)] < .
1= fop L+ fop
(g) Deuxieme cas : on suppose que fy < p < 1. Montrer que :
P+ Jo
f(z)] < :
1) L+ fop

(h) Toujours avec z = r e’ € D et avec }T( f(2)) ‘ = p, établir I'inégalité :

fo— 2] fo+ 2]

(i) Sans I’hypotheése 0 < f(0) < 1, montrer que toute application holomorphe f: D — D
satisfait la paire d’inégalités :

O _ .
=l < Vel s

< |f(z)] <

[f(O)] + ]2
L+ [£(0)] - ]2

(VzeD).
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Exercice 4. L’objectif est de déterminer la valeur exacte de fooo sinz?dr et de

Jy° cos x? dx, avec des techniques d’ Analyse Complexe.

(a) Montrer que co = fooo }sin xQ‘ dzx. Indication: Effectuer le changement de variable u :=
22

(b) Pour R > 0 quelconque, on introduit la courbe fermée simple orientée dans le sens
trigonométrique :

Tw == [0,R] U arc (R, Re™*) U [Re"™* 0] =t Ty U o U Ty

Dessiner ', en indiquant I’orientation des 3 morceaux de son bord, ainsi que son intérieur
FR int-

(¢) Que vaut fFR e~ dz?

(d) Montrer que :

R—o0

w/2 ).
0= lim R/ e et gt
0

Indication: Utiliser la minoration sint > % t, valable pour 0 < ¢ < 7.

(e) En admettant la valeur de fooo e dy = ‘/77? établir que :

/ sinz?dr = ﬁ :/ cos x2 dz.
0 2v/2 0
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8. Examen 8

Exercice 1. On définit la branche (non principale) de la fonction logarithme par :
log e = logr +1i6,
lorsque r > Oet —% < 6 < 2.

Pour 0 < r < 1 < R, soient 7, et yi les deux demi-cercles fermés de rayons r et R
contenus dans le demi-plan supérieur fermé {Im z 2z 0}, et orientés dans le sens trigono-
métrique positif.

(a) Elaborer une figure compléte et soignée incorporant les éléments suivants :

e —R,—1,—r,0,r, 1, R, ainsi que les quatre courbes orientées [—R, —7], v, [, R], Vr;
° i

e |’axe de coupure {z’y: Yy E ]R,}.

(b) Montrer que :

" ) ) . 2 2 3
| | | |
/ (ng) d$+/ (c;gZ) dH/ (oglf|+m) dx_/ (zgz) 4 — T
s 2 +1 221 _R x4+ 1 e 22t 4

(¢) Montrer que :
hal |
= / 20ga: dr.
0 T + 1

2
0= lim / (log 2)” ;..
.

2
R—o00 RZ—|—1

o (| 2 3
/ (zg:v) dr = =
o x°+1 8

Exercice 2. On pose Fy(z) := 1 — z, et pour p € N5, on pose :

(d) Montrer que :

(e) Etablir la formule :

22 Zp
E,(2) == (1—z2)T 2T %

et on abrege :
2P

Ly(z) = z+§—i—~~+?.

—E(2) = 27 elr®) — Z ar 2,

k=p

(a) Montrer que :

avec des coefficients a; > 0 tous positifs.

1—
zp+1 Z bk Z

(b) Montrer que :
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définit une fonction holomorphe entiére, i.e. un élément de &(C), avec des coefficients
br. > 0 tous positifs.

(¢) Montrer que :

|z| <1 —

‘1_—EP<Z> < 1.

o+l

(d) Soit une suite {z,}>°,, de points z, € C\{0} pas nécessairement distincts entre eux,
avec |z,| — oo lorsque n — oo. On abrége :

Tn = |za| > 0.
Montrer que, pour tout rayon > 0 fixé, on a :
0o rn
Z (—) < oQ.
n=1 'n

(e) On suppose dorénavant donnée une suite {p, }°°, d’entiers p,, € N tels que, pour tout
r > 0fixé, ona:

Montrer que le produit infini :

it z
[T 2. (2):
n=1 n
converge normalement sur les compacts de C, et définit une fonction holomorphe dans C
tout entier.

(f) Maintenant, on suppose que les z,, € C\{0} sont mutuellement distincts :

Zny F Zng pour ny # ns.
Montrer qu’il existe une fonction holomorphe enti¢re g € &/(C) satisfaisant :
e {weC: glw)=0}={z.}2,3
e 0 # ¢'(z,) pour tout m > 1.
(g) On pose :
9(2)
Ju(z) = )
R R NYAC)
M, = max |fn(z)|

|2|<5 |2l
2

Etablir I’existence de constantes appropriées ¢,, € C telles que :
o)
h(z) = Z Wy, fo(z) €720,
n=1

constitue une fonction holomorphe entiere h € ¢'(C) résolvant le probléme d’interpola-
tion :

h(zm) = wn (Vm>1).
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Exercice 3. Dans un plan C > w, soit la bande B, et dans un plan C > s, soit le demi-plan
droit, définis par :
B = {wEC: —1<Rew<1},

H := {seC: Res>0}.

(a) Montrer que I’application :

s = p(w) = 2",

constitue un biholomorphisme B — H.
(b) Soit un disque unité :
A= {(eC: [¢|<1}.

Montrer que I’application :

s—1
C=0) = oy
constitue un biholomorphisme H — A.
(¢) Montrer que I’application :
¢ = tan T w,

constitue un biholomorphisme B — A.
(d) On se donne maintenant une application holomorphe f: D — B avec f(0) = 0, ou
D := {]z] < 1} est un disque unité.
Soit g := 1 o p o f. Dresser une figure soignée incorporant les éléments suivants :
e D,0 € D, un élément z € D, I’application f;
e 3,0 € B, unélément w € B, I'application ¢, les points —1 et 1;
e ,1 € H,unélément s € H, I’application v ;
e A,0 € A, unélément ¢ € A, I’application g.
(e) Montrer que pour tout rayon 0 < r < 1,ona:

g({lzl <r}) < {lKI <}
(f) Montrer que pour tout rayon 0 < r < 1, I’image inverse :

v {Cl=r}) = Ca (H),

2r
1—r2

est un cercle dans le plan des s :

142 .
1—r2>

2r .
e de rayon 175

e de centre

e de diametre le segment H—;:, ], contenu dans I’axe réel.

Indication: On pourra poser s = o + i t.

(g) Vérifier que v~ ({|¢] < r}) est le disque ﬁ% (323) dans le plan C,, contenu dans
H.

(h) Redessiner la figure de la Question (d), en y ajoutant le cercle {|z| = r}, avec f(C,),
avec (f(C,)), avec ¥ (o (f(C,))), avec le cercle Cz._(1£53), etavec {|¢| = r}.

27r
1—r2
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(i) Pour tout s € D 2r (}ffqz), montrer que :
1—r

[Ime~"(s)| < Zlog T

(j) Montrer que pour tout |z| < 1, toujours avec f: D — B satisfaisant f(0) = 0,ona:

‘Imf(z)‘ < %Iog}f—tl.

Indication: Observer que ¢~ '(s) = —i2(log|s| + iargs), pour s € H avec |arg s| < 5.
(k) Montrer que pour tout |z| < 1, toujours avec f: D — B holomorphe satisfaisant
f(0)=0,o0na:
IRe f(2)| < 2arctan|z].
Indication: En dessinant une figure soignée, on pourra déterminer I’angle minimal «(r) tel
que :
D2 (35) C {s€C: Res>0, |args| <a(r)}.

1—r2 1—r?




