
Une introduction à la programmation avec Python

Martin Averseng – 7 Janvier 2026

Introduction

Ce cours est une introduction à la programmation. Un programme est un ensemble d’instructions qui sont
écrites dans un langage suffisamment dénué d’ambiguité pour qu’on puisse les traduire automatiquement
en une séquence d’actions qui peuvent être effectuées par une machine : l’ordinateur. L’apprentissage de
la programmation, c’est non seulement l’apprentissage de l’un de ces langages 1, mais aussi et surtout l’art
de concevoir des programmes, c’est-à-dire, étant donné une tâche potentiellement complexe, de trouver la
suite astucieuse d’instructions qui amène (efficacement) l’ordinateur à accomplir celle-ci. De ce fait, la
programmation est une tâche essentiellement créative, souvent ludique. L’un des objectifs de ce document
est de faire découvrir ce plaisir de programmer.

Entre les mains d’un programmeur, un ordinateur peut devenir un outil exceptionnellement puissant.
Voici quelques exemples marquants de ce dont il est capable :
— Décrypter des codes comme Enigma, le code utilisé par l’armée Allemande pendant la seconde guerre

mondiale, et inversement, crypter nos conversations privées et transactions bancaires,
— Battre n’importe quel humain aux échecs 2 et maintenant aussi au jeu de Go, 3

— Mettre les humains en communication (téléphone, internet) et effectuer des recherches par mot-clés et
pertinence dans d’immenses bases de données (l’application qui a fait la fortune de Google),

— Générer et diffuser du contenu audiovisuel, pour le montage/retouche photo ou les effets spéciaux au
cinéma, la musique électronique, les jeux vidéos, la réalité virtuelle, etc.

— Résoudre des problèmes d’optimisation en industrie. Par exemple, le pilotage des moyens de pro-
duction d’EDF demande la résolution de ce type de problème pour décider chaque jour combien, où,
et quand produire l’énergie. Les solutions trouvées par ordinateur permettent de réaliser des écono-
mies (énergétiques et monétaires) considérables par rapport à celles que les humains sont capables de
trouver.

— Générer de manière automatique du texte cohérent et répondant à des requêtes précises, en exploi-
tant l’immense base de données qu’est Internet (chatGPT, etc.), et ce, en donnant l’impression d’une
intelligence semblable à celle des humains. 4

Cette liste, loin d’être exhaustive, nous rappelle que les ordinateurs jouent un rôle central dans beaucoup
d’aspects de notre vie. Apprendre à programmer, c’est donc aussi découvrir un aspect important du monde
dans lequel nous vivons.

1Il existe de nombreux langages de programmation différents, comme Fortran, C/C++, Java, Python, etc. Tous les langages
permettent de faire accomplir les mêmes tâches à l’ordinateur, mais plus ou moins efficacement. En général, plus un langage est
efficace, plus il demandera à l’utilisateur de gérer avec finesse des détails de l’exécution, et donc plus il sera difficile à maîtriser.

2Près de 30 ans après la célèbre défaite de Kasparov contre DeepBlue en 1997, la supériorité des ordinateurs aux échecs
est aujourd’hui fermement établie. Il semble désormais impensable qu’un humain n’arrache ne serait-ce qu’un match nul à la
machine.

3Le long règne des humains au Go a été souvent vu comme un indice de la supériorité de l’intuition sur le calcul pur,
(de manière assez amusante, on trouve de nombreuses déclarations similaires à propos des échecs 50 ans plus tôt), mais cette
supériorité, et la distinction même entre intuition et calcul, n’est plus si évidente depuis que AlphaGo a battu les meilleurs
joueurs du monde entre 2015 et 2017.

4Cette intelligence potentielle de la machine fut notamment anticipée par Ada Lovelace (1815-1852, la première personne
à avoir écrit un programme informatique, fait pour être exécuté par la “machine analytique” de Charles Babbage), puis Alan
Turing (1912-1954, l’un des pères fondateurs de l’ordinateur moderne).

1

Ce cours utilise le langage Python, 5 qui est un langage libre, très facile à prendre en main, tout en
restant relativement efficace, et qui est utilisé dans de nombreux contextes y compris professionnels. C’est
donc un excellent langage pour l’apprentissage de la programmation. Mais ce document n’est pas un cours de
Python. Nous n’utiliserons ce langage que comme un outil pour découvrir des concepts généraux, communs
à presque tous les langages. Nous avons choisi de rester éloigné des spécificités et des nombreux raccourcis
qui existent en Python (en particulier, nous ne cherchons aucunement à être “Pythonique” 6). Selon nous,
exploiter à fond le potentiel de Python relève entièrement d’un autre cours, dont l’importance est secondaire
par rapport à la découverte de la programmation.

Chaque chapitre est accompagné d’une sélection d’exercices. Ce n’est pas une mauvaise méthode de
commencer par les exercices, puis d’aller “à la pêche aux informations” dans le cours à chaque fois qu’on en
a besoin. Les premiers exercices sont des applications directes du contenu du chapitre, tandis que les suivants
introduisent des idées importantes et classiques d’algorithmique et de programmation. Nous marquons d’une
étoile les exercices qui sont fondamentaux.

Ce document est une version remaniée d’un polycopié de cours d’introduction à la programmation dis-
pensé en licence de mathématiques. C’est donc un “cours d’info pour des matheux”, et pour cette raison,
vous y trouverez majoritairement des exemples mathématiques. En particulier, une attention spéciale est
accordée à la démonstration de certaines propriétés des algorithmes que nous allons étudier. Par exemple,
nous chercherons à démontrer que les programmes que nous concevons finissent par s’arrêter et effectuent
correctement la tâche désirée (parfois, cela n’a rien d’une évidence !). Nous avons cherché à limiter un peu les
prérequis mathématiques nécessaires. À ce titre, certains rappels sont fournis en annexe (d’autres seraient
sans doutes nécessaires mais ne sont pas encore présents par manque de temps).

Je souhaite dédier ces notes à la mémoire de Philippe Testud, en souvenir du cours d’informatique qu’il
dispensait quand j’étais son élève en classe prépa et qui m’a beaucoup marqué.

Merci de bien vouloir signaler les erreurs que trouvez par mail à martin.averseng@univ-angers.fr.

Fig. 1 – Source : xkcd.com.

5Le concepteur de Python, Guido van Rossum, dit avoir choisi le nom “Python” en référence aux Monty Python, une célèbre
troupe de comédiens britanniques actifs dans les années 1970.

6L’adjectif pythonique qualifie le code Python “bien écrit” selon certains standards de la communauté.

2

martin.averseng@univ-angers.fr
xkcd.com

Table des matières

1 Objets, variables et mémoire. 5
1 Les objets Python . 5
2 Variables . 9
3 Représentation en binaire . 14

2 Booléens et instructions conditionnelles 20
1 Propositions et booléens . 20
2 Les instructions conditionnelles : if/else, while . 24

3 Tableaux 31
1 Introduction . 31
2 Opérations sur les tableaux . 32
3 Parcourir les éléments . 35
4 Un comportement inattendu . 36

4 Fonctions 44
1 Fonctions et algorithmes . 44
2 Exécution d’une fonction . 46
3 Les fonctions en Python . 48
4 Fonctions sur des tableaux . 53
5 De nouveaux programmes interminables . 54

5 Validité et complexité des algorithmes 58
1 Terminaison et correction d’un algorithme . 58
2 Compléxité algorithmique . 61

6 Récursivité 69
1 Introduction . 69
2 Fonctions récursives en Python . 70
3 Complexité des fonctions récursives . 71
4 Problèmes à structure récursive . 75
5 Diviser pour régner . 76

7 Classes 81
1 Définition d’une classe . 81
2 Initialisation et affichage . 82
3 Attributs . 82
4 Méthodes . 86

8 Listes et arbres 94

3

A Rappels mathématiques 95
1 Suites et séries particulières . 95

1.1 Somme des entiers entre 1 et n . 95
1.2 Série géométrique . 95

2 Principe de récurrence . 96
2.1 Démonstration par récurrence . 96
2.2 Définition récursive . 97

3 Matrices . 98

B Textes codés 100
1 Texte 1 . 100
2 Texte 2 . 101

4

Chapitre 1

Objets, variables et mémoire.

Dans ces notes, nous proposons d’utiliser “Thonny”, qui est un IDE (Integrated Development Environment)
dédié au langage Python 1. Selon le système d’exploitation disponible sur votre ordinateur (Windows, Mac ou
Linux), utilisez la méthode d’installation appropriée, puis lancez Thonny. Choisissez la langue d’installation
que vous souhaitez, puis validez : vous arrivez sur une fenêtre comme ci-dessous

La fenêtre de Thonny se divise en deux zones : en haut, l’éditeur vous permet de créer, éditer et
enregistrer des fichiers ; en bas, la console vous permet d’entrer et exécuter directement des instructions.

1 Les objets Python
Dans la console de Thonny, cliquez à droite des trois chevrons et écrivez

1Il existe d’autres IDE dédiés à Python qui sont bien plus “standard”, comme Spyder par exemple, ou les jupyter-notebook.
Notre décision d’utiliser Thonny est simplement motivée par son extrême simplicité et sobriété, en particulier son absence totale
de distraction par des auto-complétions intempestives, suggestions d’amélioration du code etc.

5

>>> "Hello world"

sans oublier les guillemets, puis appuyez sur Entrée . Vous voyez s’afficher le texte 'Hello world'. Pour
l’instant, rien de bien impressionnant, Python s’est contenté de répéter ce que vous avez écrit comme un
perroquet. Quand vous entrez une expression dans la console, Python évalue celle-ci puis affiche le résultat.
Ici, vous avez entré une chaîne de caractère (signalée par les guillemets), et son évaluation n’est rien d’autre
que la chaîne de caractère elle-même. Si vous écrivez

>>> 1 + 1

cette fois, évaluer l’expression revient à faire l’addition. Les opérations sont aussi possibles sur les nombres
à virgule : ils sont écrits avec un point "." comme ceci :

>>> 1.5 * 2
3

En essayant les instructions suivantes, vous devriez pouvoir deviner comment est évaluée l’opération ** :

>>> 2**2
>>> 3**2
>>> 2**3

Notez que des calculs difficiles (pour un humain) comme

>>> (2**372) * (3**745)

sont évalués en une fraction de seconde. Vous pouvez aussi additionner des chaînes de caractère : essayez

>>> "Hello " + "world
>>> "1" + "1"

Ici Python reconnaît que vous additionnez deux objets de type “chaîne de caractères”. L’évaluation de ces
expression est la concaténation (mise “bout-à-bout”) des deux chaînes. Ainsi, l’addition, qui est normalement
définie pour les nombres, prend un nouveau sens quand elle est appliquée aux chaînes de caractères.

Les objets en Python

Les objets sont les choses que Python peut manipuler et combiner dans des opérations/actions.
Chaque objet possède un type : entier, chaîne de caractère, nombre à virgule, ... Les objets “vivent”
dans la mémoire de l’ordinateur.

6

Les types en Python

Il existe plusieurs types “natifs” en Python. Nous venons d’en voir quelques exemples : <int>
(“integers” : entiers), <str> (“character string” : chaîne de caractères), <float> (“floating point
number” : nombres à virgule flottante a). Pour chaque type, un certain nombres d’opérations sur
celui-ci sont définies. Nous venons de voir l’addition, la multiplication et la puissance pour les <int>
et les <float>, et la concaténation pour les <str>. Plus tard, nous pourrons définir de nouvelles
opérations sur des types existants, et aussi créer nos propres types.

aLe mot “flottant” vient du format dans lequel sont stockés ces nombres, mais nous ne nous étendrons pas sur celui-ci
dans ce cours.

Il est temps de créer votre premier script. Dans la zone supérieure de Thonny, écrivez l’instruction
print("Hello world"). La commande print signifie “afficher”. Vous pouvez enregistrer votre fichier,
par exemple sous le nom hello.py (“.py” est l’extension de fichier pour les scripts Python), dans un dossier
nommé par exemple “CodePython”. Dans Thonny, exécutez ce fichier en appuyant sur la touche F5 , ou en
cliquant sur la flèche verte en haut de la fenêtre. Notez qu’en exécutant votre fichier, tout ce qui se trouvait
dans la console (la zone inférieure) est effacé 2, et toute la mémoire de Python est réinitialisée. Lorsque vous
exécutez un fichier, ceci a pour effet de “remettre Python à zéro” puis d’exécuter l’une après l’autre chaque
ligne du fichier. Contrairement à la console, le résultat de chaque ligne n’est pas affiché (sauf si vous en
donnez explicitement l’instruction avec la commande print). Pour résumer :
(i) La console est intéractive. Vous pouvez entrez directement des commandes qui sont exécutées et

affichées. Vous ne pouvez pas enregistrer les commandes que vous y entrez. La console est à utiliser
comme une sorte de brouillon.

(ii) L’éditeur n’est pas intéractif. Vous pouvez écrire des instructions ligne après ligne et les enregistrer
dans un fichier. Lorsque vous exécutez le fichier, cela exécute toutes les instructions, dans l’ordre.
L’éditeur est l’endroit où vous mettrez au propre vos programmes.

Division euclidienne : La division en Python est notée par / . Par exemple

>>> 3/2
1.5

Mais il existe un autre opérateur de division, la division Euclidienne, d’une importance fondamentale en
programmation. Par exemple, la division Euclidienne de 15 par 7 donne 2, reste 1. On appelle 2 le quotient,
et 1 le reste. Ces valeurs sont celles que l’on obtient quand on “pose” une division comme à l’école (voir
Figure 1.1)

Fig. 1.1 – La division Euclidienne de 15 par 7.
2Vous pouvez cependant “remonter” l’historique des commandes entrées dans la console en cliquant à côté des trois chevrons

et en utilisant la flèche ↑ autant de fois que nécessaire.

7

Pour pouvoir formuler des raisonnement impliquant la définition euclidienne, nous aurons très souvent
besoin de l’écrire comme ceci : si a et b sont deux entiers, avec b > 0, le quotient q et le reste r de la division
euclidienne de a par b sont tels que a = bq + r et r ∈ {0, . . . , b − 1}. Vous savez peut-être (ne serait-ce que
par habitude des calculs) qu’un tel couple q et r existe toujours. Mais en cas de doute, cette définition est
justifiée par le théorème suivant.

Théorème 1.1 : Division euclidienne

Soient a et b deux entiers. Si b > 0, il existe un unique couple d’entiers q et r tels que

a = bq + r avec 0 ≤ r < b.

Démonstration.
1. (Existence de q et r) Considérons, parmi la liste de tous les multiples de b (0, b, 2b, etc. mais

aussi −b, −2b, ...), tous ceux qui sont ≤ a. Appelons cet ensemble Mb, et considérons N son
plus grand élément. Comme N est un multiple de b, on peut l’écrire sous la forme N = qb où
q est un entier. On pose alors

r = a− qb.

Avec cette définition, on a évidemment l’égalité a = qb + r, et pour conclure, il reste à vérifier
que 0 ≤ r < b.
Pour ce faire, on remarque d’une part que a ≥ qb (puisque qb ∈ Mb), donc r(= a − qb) ≥ 0.
D’autre part, qb est le plus grand multiple de b inférieur ou égal à a. En particulier, (q + 1)b,
qui est plus grand que qb (car b > 0), vérifie donc obligatoirement (q+1)b > a. En soustrayant
qb de part et d’autre de cette inégalité, on voit donc que

b > a− qb

c’est-à-dire, b > r (par définition de r). On a ainsi montré que 0 ≤ r < b.
2. (Unicité de q et r) S’il y avait deux combinaisons possibles q, r et q′, r′, on aurait bq + r = a =

bq′ + r′, donc r − r′ = b(q′ − q). En particulier, r − r′ serait un multiple de b. Mais à cause de
la condition supplémentaire 0 ≤ r, r′ < b, r − r′ est trop petit être un multiple de b autre que
0. En effet, en ajoutant les inégalités −b < −r′ ≤ 0 et 0 ≤ r < b, on obtient

−b < r − r′ < b.

Ainsi, r − r′ = 0, c’est-à-dire, r = r′. Mais comme bq + r = bq′ + r′, on en déduit que bq = bq′,
donc q = q′ puisque b ̸= 0. Ceci établit l’unicité, et donc conclut la preuve.

Remarque : Si b < 0, le résultat est encore vrai, cette fois avec b < r ≤ 0.
En Python, l’opérateur “quotient” de la division euclidienne est désigné par // , tandis que l’opérateur

“reste” est désigné par % . Essayez par exemple :

>>> 15//7
>>> 15 % 7
>>> 42 // 2
>>> 42 % 2
>>> 42 % (-5)

8

2 Variables
Assignation
À présent, tapez simplement la commande suivante (sans guillemets)

>>> a

puis tapez Entrée . Cette fois, Python ne répète pas ce que vous avez écrit, mais se montre un peu plus
agressif :

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'a' is not defined

À chaque fois que Python vous parle en rouge, il s’agit d’un message d’erreur. Mais inutile de fuir en courant :
au contraire, lisez le message attentivement, il va vous aider à comprendre ce qui cloche.

Les erreurs en Python

Les premières lignes vous aident à localiser l’erreur. Traceback signifie que Python “remonte” la liste
des appels qui ont mené à cette erreur, du plus ancien au plus récent (most recent call last). Ici
<stdin> veut dire que l’erreur a eu lieu dans la console, ou “standard input”. Ce type d’information
sera surtout utile quand votre code sera plus long et se décomposera en plusieurs fonctions qui
s’appellent les unes dans les autres. La dernière ligne vous indique la nature de l’erreur : ici, nous
apprenons que le “nom” a n’est pas défini. C’est par là qu’il faut commencer ! Souvent, on gagne du
temps en lisant la fin du message d’erreur en premier.

La raison est que sans guillemets, Python considère les mots tels que a comme des variables, ou plus
exactement, des noms de variable, et pas des chaînes de caractères.

Définition 1.1 : Variable

Une variable est définie par
1. Un nom, ou étiquette, comme par exemple a ou ma_variable,
2. Une valeur, qui est un objet Python (entier, flottant, chaîne de caractère, ...).

Quand vous avez entré cette commande, vous avez demandé à Python d’afficher la valeur de la variable
dont le nom est a. Mais pour l’instant, cette variable n’a pas été définie, ce qui explique sa petite saute
d’humeur. Remédions à cela en entrant la commande

>>> a = 1000

Et voilà, vous avez créé votre première variable ! Son nom est a, et sa valeur est l’objet <int>1000. Une
instruction de ce type est appelée une assignation. C’est l’une des instructions les plus importantes en
programmation.

9

Définition 1.2 : Assignation

Une assignation est une instruction de la forme

<nom_de_variable> = <expression>

où
(i) <nom_de_variable> est un nom de variable valide, c’est-à-dire un mot formé de lettres, de

chiffres et/ou du caractère “_”, mais ne commençant pas par un chiffre. Par exemple, a, b,
ma_variable, F1b0n4cc1 sont des noms de variables valides, mais pas 1234 ni 2mbledore.

(ii) <expression> est n’importe quelle expression valide (comme 1000, 1+1, "Hello " + "world",
etc.)

Remarquez qu’en exécutant l’assignation, c’est le silence radio du côté de Python. Il n’a pas l’air d’avoir
réagi ! Mais dans les coulisses il s’est passé beaucoup de choses : d’abord, Python a évalué l’expression 1000,
fabriqué l’objet correspondant au résultat, (en l’occurrence, tout simplement <int>1000 ici). Puis il est allé
le ranger dans son espace mémoire, que vous pouvez vous imaginer comme un immense hôtel contenant
une quantité astronomique de chambres, ou cases mémoires. Chaque chambre porte un numéro unique. À
chaque fois que Python fabrique un nouvel objet, il trouve une chambre inoccupée et y installe le nouvel
objet. Pour notre objet <int>1000, Python a choisi, disons, la chambre 302. Enfin, Python ajoute le nom de
variable (donc ici, a) dans son registre et écrit en face le numéro de la chambre occupée par l’objet associé.
Sur son registre, Python a donc écrit la nouvelle ligne suivante :

========= REGISTRE =========
Nom | Adresse

a | 302

Dans du texte ou du “pseudo-code” 3, la notation habituelle pour désigner une assignation est a← 1000.
Ceci peut être pensé comme “la variable a reçoit la valeur 1000”. De même, les instructions

>>> pi = 3.1415 # Ce n'est qu'une approximation !
>>> message = "bonjour"

sont des assignations, que l’on note pi← 3.1415 et message← "bonjour" en pseudo-code. En les exécutant,
vous ajoutez deux nouveaux objets dans l’espace mémoire : un <float>3.1415 et un <str>"bonjour". De
plus, deux nouvelles lignes sont ajoutées au registre pour indiquer les noms pi et message, ainsi que les
adresses des objets associés, voir Figure 1.2.

Les commentaires en Python

Sur la ligne ci-dessus contenant pi = 3.1415, vous voyez apparaître le symbole # : il permet d’ajouter
un commentaire à côté d’une instruction. Tout ce qui est écrit sur cette ligne après le symbole # sera
ignoré par Python au moment de l’exécution : c’est donc le bon endroit pour commenter votre code,
afin d’aider vous-même et les autres à comprendre votre programme.

3Le pseudo-code est une façon de décrire un programme à l’aide d’une syntaxe qui imite celle d’un langage de programmation,
tout en restant plus lisible qu’un vrai langage de programmation. Le pseudo-code ne peut pas être exécuté directement par un
ordinateur.

10

Fig. 1.2 – Représentation schématique de l’espace mémoire.

Pour connaître le vrai numéro de case mémoire que Python a attribué à votre objet, vous pouvez taper
la commande id(a). Vous pouvez également afficher le type de cet objet avec type(a) :

>>> a = 1000
>>> id(a)
131598003905008
>>> type(a)
<class "int">

Ici, le numéro de case mémoire est donc 131598003905008 (la valeur que vous aurez sera différente de celle-ci :
chaque ordinateur a sa propre gestion de l’espace mémoire). Tapez type(pi) et type(message) pour vérifier
les types des objets associés à ces noms. Si vous tapez id(bidule) out type(bidule), cette fois vous aurez
une erreur : le nom bidule n’est pas sur le registre, donc il n’y a pas de case mémoire associée à bidule.

Le signe “=” en Python

Lorsqu’on écrit a = 1000 en Python, il ne s’agit donc pas d’une proposition vraie ou fausse comme
en mathématiques, mais d’une assignation. Une assignation est une instruction : celle de donner
une valeur (ici 1000) à une variable (ici a). Pour Python, l’assignation se traduit en détail par les
actions suivantes :

1. Évaluer l’expression à droite du signe égal (ici, 1000).
2. Fabriquer un objet contenant le résultat (un <int>1000).
3. Lui attribuer une chambre libre (la 302 par exemple).
4. Inscrire au registre le nom de la variable (ici a), et lui associer le numéro de la chambre qui

vient d’être créée.

11

À présent, exécutez de nouveau la commande

>>> a

Cette fois, Python ne vous affiche plus de message d’erreur, mais vous affiche la valeur 1000. Dans les
coulisses, Python a consulté son registre, a vérifié que le nom a y est inscrit, puis est allé à la chambre
enregistrée à ce nom. Il a trouvé l’objet 1000, et a donc affiché cette valeur dans la console. En d’autres
termes, quand une variable existe, son évaluation n’est autre que sa valeur.

Réassignation
Une variable est flexible : même après l’avoir assignée, on peut réassigner sa valeur. Essayez par exemple

>>> a = 1001

Pas de message d’erreur : même si a est déjà définie, ceci ne pose aucun problème. Python va suivre
exactement les mêmes étapes :

1. évaluer l’expression à droite du signe égal (ici, 1001)
2. fabriquer un objet contenant le résultat (un <int>1001)
3. lui attribuer une chambre libre (la 403 par exemple)
4. inscrire au registre le nom de variable a et lui associer le numéro de la chambre qui vient d’être créée.

L’ancienne ligne du registre contenant la variable a est rayée, c’est la ligne la plus récente qui compte. Notons
que l’objet <int>1000 qui occupait la 302 (voir Figure 1.3) est a priori encore dans cette chambre, même
si désormais, plus aucune variable n’y fait référence. Il est donc devenu inutile (et il prend de la place !) si
bien qu’il sera détruit automatiquement quand Python aura besoin d’une chambre libre.

Puisque l’on peut réassigner les variables, il faut voir le nom de variable a plutôt comme une “étiquette”,
temporairement posée sur un objet, mais que l’on peut librement déplacer sur un autre objet un peu plus
tard. Le nom de variable ne fait pas partie intégrante de l’identité de l’objet, ce n’est pas son “prénom/nom
de famille”. On peut vérifier que ceci correspond bien au fonctionnement interne de Python : en affichant
id(a), on constate que le numéro de “chambre” change après la réassignation :

a=1000
print("Valeur de a :",a)
print("Adresse de a",id(a))
a=1001
print("Valeur de a :",a)
print("Adresse de a :",id(a))

>>>
Valeur de a : 1000
Adresse de a : 127100534685008
Valeur de a : 1001
Adresse de a : 127100531212336

Dans ce cours, nous n’aurons jamais besoin de connaître les adresses de nos variables. Ce qui est indispen-
sable, c’est d’avoir compris ce qui se passe pendant un assignation : des objets sont créés et vivent dans la
mémoire, des variables y font référence, et ces variables peuvent être réassignées.

Pour vérifier votre compréhension de ce qui précède, essayez de répondre aux deux questions suivantes.
Nous vous invitons à simuler le comportement de Python en schématisant son espace mémoire et son registre
sur du papier.

12

Fig. 1.3 – L’état de la mémoire après la commande a = 1001.

Question 1. Prédisez ce que va afficher Python après ces commandes, en appliquant rigoureusement les
étapes d’une (ré)assignation

>>> a = 1000
>>> a = a+1
>>> a

Vérifiez votre prédiction.
Question 2. Selon vous, si l’on exécute le script suivant, la dernière aire affichée est-elle 3 ou 6 ? Recopiez le
code, exécutez-le, et vérifiez votre prédiction.

base = 1.5
hauteur = 2

aire = base*hauteur/2
print("au début, aire vaut : ")
print(aire)

base = 3
print("maintenant, aire vaut : ")
print(aire)

13

Assignations vs. proposition
Quand vous tapez l’instruction

>>> 1 = 1

vous recevez ce message d’erreur :

File "<stdin>", line 1
1 = 1
^
SyntaxError: cannot assign to literal here. Maybe you meant '==' instead of '=' ?

Ici, Python vous donne encore un coup de pouce. Il affiche la ligne dans laquelle il a trouvé l’erreur, et
souligne avec le caractère “̂ ” l’endroit précis du problème. Puis il vous indique qu’il ne peut pas “assigner
à un littéral” (c’est-à-dire à 1). En effet, 1 = 1 a la forme d’une assignation. Mais rappelez-vous : 1, à
gauche du signe égal, n’est pas un nom de variable valide ! Quand à la suggestion à la fin du message d’erreur
ci-dessus... nous allons le voir au chapitre suivant.

3 Représentation en binaire
En utilisant l’écriture en base 2 (ou la représentation binaire), les symboles 0 et 1 suffisent à représenter
n’importe quel nombre entier. L’idée est que chaque entier peut s’écrire comme une somme de puissances
de 2 (voir les exercices 19-20 à la fin de ce chapitre). Par exemple, 29 = 24 + 23 + 22 + 20 ce que l’on peut
réécrire

29 = 1
↑
× 24 + 1

↑
× 23 + 1

↑
× 22 + 0

↑
× 21 + 1

↑
× 20.

La représentation binaire de 29 est alors “11101”. De la même manière, 17 = 24 + 20 donc 17 s’écrit “1001”
en binaire, tandis que 56 s’écrit “111000” (25 + 24 + 23). L’idée n’est pas très éloignée de la représentation
décimale. Par exemple 1492 s’écrit

1492 = 1
↑
× 103 + 4

↑
× 102 + 9

↑
× 101 + 2

↑
× 100.

Les deux seules différences sont le choix de la puissance utilisée (2 en binaire, 10 en décimal), et les chiffres
autorisés devant chaque puissance (0 ou 1 en binaire, de 0 à 9 en décimal). Notons quelques propriétés de la
représentation binaire :

1. L’écriture binaire de 2 est “10” (puisque 2 = 21 + 0× 20).
2. Multiplier par 2 revient à ajouter un 0 à la fin (comme multiplier par 10 en décimal). Ainsi, 29 s’écrit

“11101” en binaire, et 58 s’écrit “111010”.
3. Quotienter par 2 (avec ou sans reste) correspond à enlever le dernier chiffre. Ainsi, 29 s’écrit “11101”

et 14 (qui est le quotient de 29 par 2, reste 1), s’écrit “1110”.
4. Pour calculer l’écriture binaire d’un nombre, on peut faire sa division euclidienne par 2, puis encore

diviser le résultat par 2, et ainsi de suite, en notant la suite des restes de chaque division de droite à
gauche. Par exemple, 29 divisé par 2 vaut 14, reste 1, puis 14 divisé par 2 vaut 7, reste 0, puis 7
divisé par 2 vaut 3, reste 1, puis 3 divisé par 2 vaut 1, reste 1, et enfin 1 divisé par 2 vaut 0, reste
1. La suite des restes était 1, 0, 1, 1, 1, ce qui, lu de droite à gauche, donne “11101”, l’écriture binaire
de 29.

5. Les nombres dont l’écriture binaire est de la forme 10000...00 sont les puissances de 2.

14

6. Les nombres dont l’écriture binaire est de la forme “111...111” s’écrivent 2N − 1. En effet

2k + 2k−1 + . . .+ 22 + 21 + 20 =
2k+1 − 1

2− 1
= 2k+1 − 1.

en utilisant la formule de sommation des termes d’une suite géométrique (voir la Section 1.2 de l’annexe
A). Par exemple, “1111” est l’écriture binaire de 15 = 24 − 1, et “1111111111” est l’écriture de 1023 =
210 − 1.

Rien n’empêche de remplacer 0 et 1 par n’importe quelle autre paire de deux symboles, du moment que
la convention est connue par tous. Cela implique que l’on peut mémoriser un entier avec une suite de signaux
“allumé” (pour 1) et “éteint” (pour 0). En convenant qu’une tension de 5 Volts correspond au chiffre 1 et une
valeur plus faible correspond à 0, cela permet donc de représenter les nombres par des signaux électriques, et
c’est au bout du compte de cette manière que procède l’ordinateur. Un bit (pour binary digit) correspond
à un signal 0/1. Ainsi, la chaîne de caractères 111000 a une longueur de 6 bits.

De la même manière qu’on représente les réels avec une écriture décimale finie ou infinie (par exemple
π = 3.141592...), tous les nombres réels peuvent aussi être représentés à l’aide d’une écriture dyadique. Par
définition, étant donnés des entiers SN , SN−1, . . ., S1, S0, s−1, s−2 etc., tous égaux soit à 0 soit à 1, le
nombre

x = SN · 2N + . . .+ S0 · 20 + s−1 · 2−1 + s−2 · 2−2 + . . .

a pour écriture dyadique “SN . . . S0, s−1s−2s−3 . . .”. Par exemple, le nombre 11
8 = 1+ 1

4 +
1
8 s’écrit “1.011” en

écriture dyadique. Comme dans le cas de l’écriture décimale, certains réels (y compris certains rationnels),
s’écrivent avec un nombre inifini de chiffres binaires après la virgule. Par exemple, 1/3 a pour écriture
dyadique

“0.0101010101...”

(où le motif 0101 se répète à l’infini). Autrement dit, 1/3 = 2−2+2−4+2−6+ . . ., ce que l’on peut vérifier en
utilisant encore la formule de sommation des termes d’une série géométrique. En pratique, dans l’ordinateur,
on ne peut pas mémoriser une infinité de chiffres, donc les nombres réels sont approximés avec seulement un
nombre fini de chiffres binaires après la virgule.

De même, tous les caractères, alphabétiques, numériques ou spéciaux, peuvent être encodés par des
nombres entre 0 et 256 = 28, par exemple 0 pour a, 1 pour b, etc., qui eux-même peuvent être écrit en
binaire comme une suite de 8 bits, ou un octet (byte en anglais). Ceci permet donc d’encoder un texte à
l’aide d’une suite de 0 et de 1. Par exemple, selon le code décrit ci-dessus, la chaîne de caractères "bonjour"
s’écrirait

00000001︸ ︷︷ ︸
“b”

00001111︸ ︷︷ ︸
“o”

00001110︸ ︷︷ ︸
“n”

00001010︸ ︷︷ ︸
“j”

00001111︸ ︷︷ ︸
“o”

00010101︸ ︷︷ ︸
“u”

00010010︸ ︷︷ ︸
“r”

C’est ainsi que sont enregistrés vos fichiers dans votre disque dur : ils sont traduits en une suite de 0 et 1,
qui est matérialisée par une suite de petits aimants qui sont orientés soit pôle Nord vers le haut (pour 1),
soit vers le bas (pour 0), et tant qu’elle n’est pas activement modifiée, leur orientation reste stable (au moins
pendant plusieurs dizaines d’années).

15

Réponse à la question 1 :
1. Python évalue l’expression à droite du égal, ici (la valeur actuelle de a) + 1 = 1001 + 1 = 1002.
2. il fabrique un nouvel objet <int>1002
3. il trouve une chambre libre et y installe le nouvel objet
4. il ajoute au registre la ligne associant le nom de variable à gauche, ici a, à cette nouvelle chambre

Remarquez que la variable a change donc de valeur au cours de l’exécution de cette instruction : pendant
l’évaluation du second membre, elle valait 1001, et à la fin, elle vaut 1002. L’opération

variable = variable + 1

peut être comparée au fait d’appuyer sur le bouton d’un cliqueur.

Anecdote : dans certains langages – mais pas en Python – on peut remplacer l’instruction a=a+1 par a++.
C’est la raison pour laquelle le langage C++ porte son nom : il est la version “supérieure” du langage C.

Réponse à la Question 2 :
Comme vous le voyez, la réassignation de base n’a pas affecté a posteriori la valeur de aire. Python n’établit
pas de lien logique entre variables : le seul moyen de modifier la valeur d’une variable est de la réassigner.

16

Exercices du Chapitre 1

Types et opérations
1. Créez 3 nouveaux noms de variables de votre choix,

chacun associé à l’un des 3 types vus dans le chapitre.
Afficher leur type avec Python ainsi que leur adresse
mémoire.

2. Quelle est la différence entre les commandes a = 2
et b = "2" ? Que se passe-t-il avec la commande
c = int(b) ? En procédant par analogie, comment
pouvez-vous convertir la chaîne de caractère pi_str
= "3.141592" en le <float> correspondant ?

3. Si nom1 et nom2 sont deux variables du même type
parmi les trois types précédents, quel est le résultat
de l’instruction nom1 + nom2 ?

4. Si nom1 est associé à un <int> et nom2 à un <float>,
quel est le type de nom1 + nom2 ? Que se passe-t-il si
nom2 est de type <str> ? Et si on remplace l’addition
par la multiplication ?

5. Testez la commande 1e6. Comparer avec 10**6 et
10.0**6. Comparez les commandes suivantes

avogadro_1 = 6.022*(10**23)
avogadro_2 = 6.022e23

Que vaut la différence ? Qu’en pensez-vous ?

6. Un script contient les commandes suivantes

a = 2**0.5
b = a**2
c = b - 2
print(c)

Si c’était un mathématicien qui réalisait ces opéra-
tions que devrait-il afficher à la fin ? Qu’affiche Py-
thon ? Ce résultat devrait-il vraiment nous étonner ?

7. Testez le code suivant

a = 1000
print("Commande : a = 1000")
print("\t valeur de a :", a)
a += 1

print("Commande : a += 1")
print("\t valeur de a :", a)
a -= 2
print("Commande : a -= 2")
print("\t valeur de a :", a)
a *=2
print("Commande : a *= 2")
print("\t valeur de a :", a)

(notez dans les exemples ci-dessus que la commande
print peut afficher plusieurs expressions à la suite, en
séparant chaque expression par une virgule. Le ca-
ractère \t insère une tabulation). En vérifiant sur
d’autres exemples, expliquez précisément ce que font
les commandes +=, -= et *=.

8. Testez les commandes

message = "Hello world"
print(message[0])
print(message[1])
print(message[-1])
print(message[-2])

En vérifiant avec d’autres exemples, expliquez ce que
fait en général la commande message[i] pour chaque
entier i ∈ Z.

9. Que fait la commande len(message) ?

Mémoire

10. Que va afficher le script suivant ? Justifiez, puis véri-
fiez.

a = 1
b = a
a += 1
print(a)
print(b)

11. Les instructions suivantes produisent toutes une er-
reur.

17

>>> 2 = 3
>>> 1 + a = 1 - b
>>> c = (a - b)(a+b)
>>> 1_belle_variable_binaire = 10101

Expliquez pour chacune d’elle, quel est le problème.

12* Corrigez ce programme. (Indice : utilisez une troi-
sième variable).

Echange de deux variables :
On veut assigner la valeur
de a à b, et vice-versa :

a = 1000
b = 2000
a = b
b = a
print(a) # Ok : affiche 2000
print(b) # ??? affiche 2000 aussi

13. On suppose qu’un script contient les commandes

pokemon = "pikachu"
experience = 457
attaque = 10

adversaire = "bulbizarre"
defense = 4

Pikachu lance attaque éclair
degats = attaque/defense

Bulbizarre est KO,
Pikachu gagne le combat
gagnant = pokemon
experience += 500

En utilisant le même type de représentation que dans
le cours, schématisez l’espace mémoire et le registre
suite à l’exécution de ce script (sur papier).

Représentation binaire

14. Un échiquier contient 64 cases. On pose un grain de
riz sur la première case, puis 2 sur la case suivante,
et ainsi de suite en doublant à chaque fois le nombre
de grains de riz d’une case à la suivante. Combien
de grains de riz sont posés au total sur l’échiquier ?
Comment s’écrit ce nombre en binaire ?

15. (Sur feuille) Convertir de la base 2 à la base 10 les
nombres suivants : “10”, “10101”, “11000”. Écrire
en base 2, 3 et 4 tous les nombres de 0 à 15. Don-
ner l’écriture binaire de 247. Combien de nombres
peut-on représenter avec au plus 32 bits ? Même ques-
tion avec 64 bits ? À combien de bits correspondent 4
Go de mémoire (4 giga octets, c’est-à-dire 4 milliards
d’octets) ?

16* Complétez le script ci-dessous, pour qu’il affiche la
représentation en binaire d’un nombre entre 0 et 63.

N = ?? # Entrer ici un nombre
compris entre 0 et 63

Ce script affiche la
représentation binaire de N:

... A vous de jouer !

17. Montrez que l’écriture dyadique de 1
7 est

‘‘0.001001001001...”

(le motif “001” se répétant à l’infini). Trouvez l’écri-
ture dyadique de 1

10 . Quelle est l’erreur lorsqu’on
tronque cette écriture à 50 chiffres après la virgule ?

18. Recopiez le script suivant et commentez le résultat

a = 0.1+0.1+0.1
b = 0.3
print(a)
print(b)
print(b-a)

19. Le but de cet exercice est de démontrer que tout
nombre entier N ∈ N admet (au moins) une repré-
sentation binaire. L’unicité de cette représentation
fait l’objet de l’exercice suivant.

(a) Soit n ∈ N et soit N un entier tel que

0 ≤ N ≤ 2n+1 − 1.

On remarque que l’une des deux affirmations sui-
vantes est vraie :

(i) 0 ≤ N ≤ 2n − 1,
(ii) 2n ≤ N ≤ 2n+1 − 1.

Vérifiez que dans le cas (ii), on peut écrire N = 2n+
N ′ où N ′ vérifie la condition (i), c’est-à-dire, 0 ≤
N ′ ≤ 2n − 1.

18

(b) Pour chaque entier n, on appelle P (n) la proposition
“tous les entiers compris entre 0 et 2n− 1 admettent
(au moins) une représentation binaire.” Démontrez
par récurrence (voir la Section 2 de l’appendice A)
que P (n) est vraie quelque soit l’entier n. Pour l’hé-
rédité, utiliser la question (a).

(c) Concluez.

20. Le but cet exercice est de démontrer pour tout n ∈ N
la proposition suivante :
P (n) : Si s0, . . . , sn et s′0, . . . , s

′
n sont des entiers

égaux à 0 ou 1 vérifiant l’égalité

s0 · 20 + s1 · 21 + . . .+ sn · 2n

= s′0 · 20 + s′1 · 21 + . . .+ s′n · 2n ,

alors s0 = s′0, s1 = s′1, . . ., et sn = s′n.
(a) Soit n ∈ N et soient s0, s1, . . . , sn, s′0, . . . , s′n vérifiant

les hypothèses de P (n). Montrer que s0 et s′0 sont
égaux au reste de la division euclidienne de N par 2.

(b) Déduisez de ce qui précède que

s12
0 + . . .+ sn2

n−1 = s′12
0 + . . .+ s′n2

n−1

(c) À l’aide des deux questions précédentes, démontrez
par récurrence que P (n) est vraie quelque soit l’entier
n.

19

Chapitre 2

Booléens et instructions
conditionnelles

“Lorsque, par ardeur à ce projet, je m’appliquai plus intensément, je tombai inévitablement sur cette
merveilleuse observation, à savoir que l’on peut concevoir un certain alphabet des pensées humaines et
que, par la combinaison des lettres de cet alphabet et par l’analyse des mots qui en découlent, on peut à
la fois découvrir et juger toutes choses. Lorsque je compris cela, je fus tout à fait ravi, en vérité, d’une
joie enfantine.”

Gottfried Leibniz, Préface à une caractéritique universelle.

1 Propositions et booléens
Nous commençons par introduire deux notions importantes : les propositions et les booléens. Elles per-
mettent de formaliser la notion de vérité et de vérifier la validité d’une affirmation par un calcul.

Propositions

Définition 2.1 : Proposition

Une proposition est une phrase déclarative qui a une valeur de vérité bien définie : vraie, ou fausse.

Par exemple, “Les hommes sont mortels”, “La terre est orange”, et ‘‘33 = 26” sont des propositions (la
première est vraie, les deux suivantes sont fausses). Mais “Asseyez-vous !”, “Comment t’appelles-tu ?” et
‘‘2× 3” ne sont pas des propositions. On peut combiner les propositions de trois manières fondamentales à
l’aide de connecteurs. Si P , Q sont deux propositions, alors
(i) “Non P” est une proposition, vraie si et seulement si P est fausse
(ii) “P et Q” est une proposition, vraie si et seulement si P et Q sont vraies
(iii) “P ou Q” est une proposition, vraie si et seulement si au moins l’une des propositions P , Q est vraie.
Par exemple,

P : ‘‘Les chats peuvent respirer sous l’eau ou les chats peuvent cracher du feu”

20

est une proposition, qui est fausse. Il est important de noter que le ou logique est toujours inclusif, contrai-
rement au langage courant où le mot “ou” peut avoir un sens inclusif ou exclusif selon les contextes 1. Par
exemple, la proposition

“Kurt a adopté un chat ou Kurt a adopté un chien”

est vraie dans les 3 cas suivants : Kurt a adopté un chat mais pas un chien, Kurt a adopté un chien mais
pas un chat, Kurt a adopté un chien et un chat.

Python et les propositions
On a vu au chapitre précédent que la commande 1 = 1 déclenche une erreur dans Python. Mais il est quand
même possible de créer un objet Python qui correspond à la proposition “1 = 1” ; pour cela, il faut utiliser
le symbole “==” (deux fois =). Par exemple, entrons la commande suivante dans la console :

>>> 1 == 1

Cela signifie “1 est égal à 1”. A cette proposition, Python attribue la valeur True. Soyons un peu plus
audacieux, et entrons

>>> 1 == 2

Là encore, Python a l’attitude raisonnable : il répond False. Le même mécanisme fonctionne avec des noms
de variable. Si l’on écrit

>>> a = 1 # Assignation, un seul "=". Rien d'affiché
>>> a == 1 # Proposition, deux "="
True
>>> a == 2
False

la première ligne est une assignation, comme on l’a vu au chapitre précédent. Elle a pour effet de créer
un objet <int>1 et de l’assigner à une variable nommée a. Les deuxièmes et troisièmes lignes sont des
propositions, et Python leur attribue les valeurs True et False. De même, à la proposition

>>> a*2 == a+a

Python affectera la valeur True (quelque soit la valeur assignée à a) mais avec

>>> a == a + 1

cette fois, c’est False. La proposition

>>> a % 2 == 0

1Par exemple, le “ou” dans la phrase “vous pouvez prendre du fromage ou un dessert” sera interprété naturellement comme
un “ou” exclusif (fromage ou dessert mais pas les deux), alors que dans la phrase “Vous pouvez participer si vous avez le permis
voiture ou le permis moto”, il sera interprété comme un “ou” inclusif (permis voiture, permis moto, ou les deux).

21

vaudra True si a est assigné à un nombre pair, et False sinon. On peut aussi utiliser les opérateurs >, >=,
<, <= ou encore != (différent de) pour créer des propositions :

>>> 1 <= 1
>>> 2 > 1
>>> 3 != 4
>>> 1 > 1
>>> a**2 < 0

Les trois premières expressions donnent True, et les deux suivantes donnent False (en supposant que a est
de type <int> pour la dernière). Écrivons à présent

>>> b = (a == 1001)

(les parenthèses sont superflues). Python est resté silencieux. Que s’est-il passé ? La même chose qu’au
chapitre précédent : nous venons de faire une assignation. Nous avons créé un objet, et associé le nom de
variable b à cet objet. Mais quel est cet objet ? Pour le savoir, exécutons les lignes suivantes :

>>> b
>>> type(b)

Vous devriez observer que le nom b est associé à un objet qui vaut “True”, et qui est de type <bool>,
c’est-à-dire, un booléen 2.

Booléens

Définition 2.2 : Booléen

Un booléen est un objet qui vaut soit “Vrai” soit “Faux”.

Pour raccourcir, on note parfois 0 pour Faux et 1 pour Vrai. On peut assigner un unique booléen, appelé
valeur de vérité, à chaque proposition P . Par exemple, “2 est un nombre premier” et “3! = 6” sont deux
propositions différentes, mais elles ont la même valeur de vérité, le booléen Vrai.

Les connecteurs non, et, ou se reflètent par des opérations sur les booléens :
1. La négation, notée “¬”. Si b est un booléen, alors ¬b est le booléen contraire de b. Ainsi,

¬0 = 1 , ¬1 = 0.

2. Le ou logique, qu’on note “∨”. Si a et b sont deux booléens, alors a ∨ b est le booléen qui vaut Vrai si
l’un au moins des deux booléens a ou b vaut Vrai, mais Faux si a et b sont tous les deux Faux. Ainsi,

0 ∨ 0 = 0, 0 ∨ 1 = 1, 1 ∨ 0 = 1, 1 ∨ 1 = 1

Si b est un booléen, alors on a b ∨ (¬b) = 1 : toute proposition est vraie ou fausse.
3. Le et logique, qu’on note “∧”. Si a et b sont deux booléens, alors a∧ b est le booléen qui vaut Vrai si a

et b valent tous deux Vrai. Ainsi,

0 ∧ 0 = 0, 0 ∧ 1 = 0, 1 ∧ 0 = 0, 1 ∧ 1 = 1

2du nom du mathématicien et logicien britannique George Boole

22

Pour tout booléen b, on a b ∧ (¬b) = 0 : une même chose et son contraire ne peuvent pas être vrais
simultanément.

Origine de la notation

La notation ∨ vient du latin vel qui signifie “ou inclusif”, alors qu’il y a un autre mot latin – aut –
pour le “ou exclusif”.

Les opérations sur les booléens peuvent être représentées avec des tables de vérité :

b ¬b
0 1
1 0

a b a ∧ b
0 0 0
0 1 0
1 0 0
1 1 1

a b a ∨ b
0 0 0
0 1 1
1 0 1
1 1 1

Les tables de vérités sont des outils pratiques pour vérifier la valeur de vérité d’une formule contenant des
booléens, en fonction des valeurs de ceux-ci. Par exemple, la table de vérité

a b a ∨ b ¬a ∧ ¬b (a ∨ b) ∨ (¬a ∧ ¬b)
0 0 0 1 1
0 1 1 0 1
1 0 1 0 1
1 1 1 0 1

que l’on peut calculer facilement ligne par ligne, de gauche à droite, nous permet de voir que le booléen

c = (a ∨ b) ∨ (¬a ∧ ¬b)

est toujours vrai, quelques soient les valeurs des booléens a et b. On appelle une telle formule une tautologie.
En général, pour faire une table de vérité, on inclut une une colonne pour chaque variable dans la formule
(comme a et b ci-dessus) et on met autant de lignes que nécessaires pour représenter toutes les combinaisons
possibles de valeurs. S’il y a une seule variable, il faut 2 lignes (Vrai ou Faux) ; pour 2 variables, il faut 4
lignes (Vrai-Vrai, Vrai-Faux, Faux-Vrai, Faux-Faux). En général, pour n variables, il faut 2n lignes (n choix
indépendants de 2 valeurs). 3

Le type <bool>
Comme nous l’avons vu, les expressions Python comme 1 == 1 sont évaluées comme des objets de type
<bool>. Ce type reflète les propriétés mathématiques des booléens. Un objet de type <bool> ne peut
prendre que deux valeurs possibles, True et False. Les expression et les booléens correspondants peuvent
être combinés avec les opérateurs not, and et or, qui sont les contre-parties de ¬, ∧ et ∨. Par exemple,

>>> not True
False
>>> (1 > 1) or (1 < 1)
False

3Pour lister les combinaisons, on peut compter en binaire : par exemple, pour 4 variables, les 16 combinaisons sont 0000,
0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101 et 1111, soit 0, 1, 2, ..., 14, 15 en binaire.

23

>>> (4%2 == 0) and (6%2 == 0)
True
>>> not (True and (False or True))
False

2 Les instructions conditionnelles : if/else, while
Nous allons à présent voir deux nouveaux types d’instructions fondamentales :
(i) Les mots-clés if/else qui permettent de n’exécuter un groupe d’instructions que si une certaine

condition est vérifiée,
(ii) Le mot-clé while qui permet d’exécuter un groupe d’instruction en boucle, tant que une certaine

condition est vérifiée
Ces deux types d’instructions sont cruciales, et existent dans n’importe quel langage de programmation. Ce
sont grâce à elles que vos programmes se différencieront d’une simple calculatrice, et pourront effectuer des
tâches structurées en s’adaptant aux données d’entrée et aux résultats des actions précédentes.

If/else
Commençons par if/else. Recopiez le code suivant dans un fichier Python (n’oubliez pas les “ :” ni
l’indentation)

porte_monnaie = 1 # Argent dans le porte-monnaie
prix_glace = 3 # Prix d'une glace

print("J'ai",porte_monnaie,"euros dans mon porte-monnaie")
print("Une glace coûte",prix_glace,"euros.")

if porte_monnaie >= prix_glace:
Achat d'une glace
print("J'ai assez pour acheter une glace !")
porte_monnaie = porte_monnaie - prix_glace
print("Miam !")

Affichage de l'argent restant
if porte_monnaie == 0:

print("Je n'ai plus d'argent.")
else:

print("Il me reste",porte_monnaie,"euros.")

Exécutez votre fichier. Vous allez voir que certaines instructions sont exécutées, et d’autres non. Relancez le
script en mettant assez d’argent dans le porte-monnaie. Cette fois-ci, d’autres instructions sont exécutées.
Prenez un moment pour vérifier que ce qui est affiché par Python vous semble logique. En général, on a la
syntaxe suivante :

if <condition>:
L'indentation est importante !
Ce code est exécuté seulement si <condition> vaut True
...

24

...
else:

Le bloc "else" est optionnel.
Ce code est exécuté seulement si <condition> vaut False
...
...

Le code qui suit n'est plus concerné par <condition>.
Il est exécuté dans tous les cas.

Elle permet de n’exécuter le bloc d’instructions qui suivent (délimité par l’indentation) que si <condition>
s’évalue à True. Le mot-clé optionnel else: permet de créer un bloc qui n’est exécuté que dans le cas
contraire. Le schéma de la Figure 2.1 illustre ce fonctionnement.

Fig. 2.1 – L’instruction if / else.

Un bloc indenté doit contenir au moins une instruction, sinon Python renvoie une erreur :

a = 1
b = 0
if a==0: # bloc indenté vide pour l'instant
else:

b = 1/a

Traceback (most recent call last):
File "/home/Code/blocindentevide.py", line 4

else:
^^^^

IndentationError: expected an indented block after 'if' statement on line 3

Ceci peut être énervant si on souhaite compléter le programme plus tard. Ajouter une ligne de commentaire
ne change rien.

a = 1
if a == 0:

25

Je m'occuperai de ce cas plus tard
else:

b = 1/a

(même erreur). Dans ce type de cas, on utilise le mot-clé pass, comme ceci :

a = 1
if a == 0:

pass
else:

b = 1/a

L’instruction pass ne fait rien d’autre que remplir le bloc indenté pour éviter l’erreur précédente.

L’indentation en Python

L’indentation, c’est l’ajout d’une tabulation au début d’une ligne. Vu ce qui précède, les indentations
en Python ne sont pas qu’une question de décoration : elles influencent directement ce qui sera
exécuté ou non dans votre code. En particulier, la fin d’un bloc if est signalée par un retour à
l’indentation précédente. La plupart des autres langages de programmation utilisent une syntaxe avec
délimiteurs comme if (condition){ instructions } ou encore if (condition) instructions
endif. Attention aux confusions !

While
Une autre instruction conditionnelle très importante est la boucle while (“tant que”, en français). Découvrons-
la avec un exemple

i = 5
print("Parés pour le décompte ? ")
while i > 0:

print(i)
i = i - 1

print("Décollage !")
print("Valeur finale de i :",i)

Prêts pour le décompte ?
5
4
3
2
1
Décollage !
Valeur finale de i : 0

Expliquons ce qui s’est passé. Comme pour l’instruction conditionnelle if, le bloc de code indenté sous
la condition while n’est exécuté que si la condition i > 0 vaut True. Or, au départ i vaut 5, donc la
condition est satisfaite : on exécute donc le bloc indenté. Ceci a pour effet d’afficher i, donc 5 (instruction

26

print(i)), puis de diminuer la valeur de i de 1 (instruction i = i-1). Mais cette fois, au lieu de continuer
à la suite, comme dans le cas d’un if, Python retourne à l’instruction while et teste de nouveau si
la condition est satisfaite. Désormais, i vaut 4, ce qui est toujours > 0, donc le bloc de code indenté est
exécuté une deuxième fois. Le même mécanisme continue, et ne prend fin que quand la variable i passe à
la valeur 0 : à ce moment-là, la condition n’est plus vérifiée, et Python cesse d’exécuter le bloc indenté. La
suite du code peut enfin être exécutée. De manière générale, dans le code suivant,

while <condition>:
Bloc d'instructions répétées tant que <condition> est True
...
...
...

Suite des instructions

Python exécute le bloc de code indenté en boucle tant que <condition> vaut True, et passe à la suite lorsque
<condition> vaut False. Le schéma ci-dessous illustre ce fonctionnement :

Fig. 2.2 – La boucle while

Boucles infinies

Les boucles while sont très puissantes... mais attention ! De grands pouvoirs impliquent de grandes
responsabilités. Comme vous l’avez peut-être deviné, en principe, rien n’empêche qu’une boucle
while reste bloquée à tourner en rond. Imaginez par exemple que le bloc indenté ne modifie jamais
la valeur du booléen b. Dans ce cas, à chaque fois qu’elle sera testée, la condition b vaudra True, et
l’ordinateur, tel un Sysiphe mécanique, sera donc condamné à exécuter éternellement le même bloc
de code.

Voici un exemple très simple de cette possibilité :

i = 0
while i >= 0:

27

print(i)
i = i+1

print(i) # À part chuck Norris, personne n'a atteint cette instruction.

Exécutez-le. Lorsque vous en avez assez, vous pouvez interrompre l’exécution en cliquant sur le bouton
en forme de panneau stop (ou presser Ctrl + C) – sinon, l’ordinateur n’est pas prêt de s’arrêter. De
manière générale, souvenez-vous que dès que vous écrivez “while”, il existe un risque (par expérience, non-
négligeable...) de boucle infinie. Si votre code a l’air trop lent, c’est par là qu’il faudra chercher l’explication
en premier !

Boucle for
Il arrive très souvent qu’on effectue une boucle du type

N = 100
i = 0
while i < N:

Bloc à exécuter pour i allant de 0 à N-1:
<instruction>
...
Fin du bloc. Incrémentation de i
i = i+1

suite du programme

Puisque i augmente de 1 à chaque itération, ceci a pour effet d’exécuter le bloc indenté 100 fois. Il existe
une syntaxe dédiée spécialement pour ce type de cas : la boucle for. Elle permet d’écrire un programme
équivalent mais un peu plus lisible :

N = 100
for i in range(0,N):

Bloc à exécuter pour i allant de 0 à N-1:
<instruction>
...
Fin du bloc.

suite du programme

Plus généralement, on a la syntaxe suivante

for i in range(m,n):
Dans ce bloc, la variable i parcourt m,m+1,...,n-1
Le bloc indenté est exécuté une fois pour chaque valeur de i

suite du programme

Le mot “range” vient du fait qu’en anglais, “pour i allant de m à n” se dit “for i ranging from m to n”. Si
m vaut 0, on peut remplacer range(O,n) par range(n). Prenez bonne note de la convention troublante de
Python qui consiste à inclure m mais exclure n de range(m,n). 4 Voir aussi les questions 8–9 du TP1.

4Certains informaticiens trouvent cela logique. Cela vient en partie du fait qu’avec cette définition, for i in range(10)
contient 10 instructions : i = 0, 1, ..., 9. Mais comme vous le verrez bien vite, cette convention peut devenir désagréable : il faut
s’y habituer !

28

Exercices du Chapitre 2

Booléens
1. Lesquelles de ces expressions sont des assignations ? Les-

quelles sont des propositions ?
(i) message == "Hello world"
(ii) 42 = 6*7
(iii) a = 1 == 2
(iv) 0 == (1 == 2)
(v) “Vive Thonny !”

(vii) “25 est le double de 2, n’est-ce pas ?”
(viii) “Sans Thonny, Python n’existerait pas.”
(ix) “Pour toute information, veuillez contacter le ser-

vice client”

2* Soient a et b deux booléens. En utilisant une table de
vérité, démontrez les relations suivantes

¬(¬a) = a

¬(a ∧ b) = (¬a) ∨ (¬b)
¬(a ∨ b) = (¬a) ∧ (¬b)

3* Soient a, b et c trois booléens. En utilisant une table de
vérité, démontrez les relations suivantes :

a ∧ (b ∧ c) = (a ∧ b) ∧ c

a ∨ (b ∨ c) = (a ∨ b) ∨ c

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

Comparez avec la distributivité des lois + et × sur les
entiers naturels.

4. Etant donnés deux booléens a et b, on définit le booléen

a⊙ b := ¬(a ∧ b).

(cette opération est souvent écrite aNAND b, pour “not
and”). En utilisant les deux exercices précédents, dé-
montrez les relations suivantes :

¬a = a⊙ a

a ∨ b = (a⊙ a)⊙ (b⊙ b)

a ∧ b = (a⊙ b)⊙ (a⊙ b)

Conditions if/else

5. Recopiez et exécutez le script suivant, qui montre com-
ment utiliser la commande “input” de Python :

nom = input("Entrez votre nom : ")
prenom = input("Entrez votre prénom : ")
age = input("Entrez votre âge : ")

print("Bonjour",prenom,nom,"!")
print("Vous avez",age,"ans.")

Écrivez un script qui contient un texte secret, et qui
l’affiche seulement si l’utilisateur entre un mot de passe
que vous avez choisi.

6* Complétez le script suivant

a = ?? # Entrer un nombre
b = ?? # Entrer un nombre
A vous de jouer
print(max_ab)
print(min_ab)

Le but est d’assigner le maximum des deux valeurs à
max_ab et le minimum à min_ab. Le script doit fonc-
tionner quelques soient les valeurs de a et b, sans mo-
difier le reste.

7. Recopiez et complétez le script suivant

AB = ?? # Entrer un nombre
BC = ?? # Entrer un nombre
AC = ?? # Entrer un nombre

Le but est de vérifier que le triangle ABC défini par les
côtés de longueurs AB, BC et AC est valide, et d’afficher
un message d’erreur sinon. Il faut vérifier que chacune
des longueurs est inférieure ou égale à la somme des
deux autres.

8. Complétez le programme suivant

Résolution du trinôme ax^2 + bx + c = 0
Entrer les coefficients :
a = ??
b = ??
c = ??

Ce programme doit afficher x1 et x2 les solutions réelles
de l’équation ax2 + bx + c = 0, ou afficher “aucune
solution”.

29

Boucles for et while

9* Créez un programme qui affiche 12, puis 22, ..., jusqu’à
n2, où n est une variable entière, puis un programme
qui affiche la valeur de la somme

Sn = 13 + 23 + 33 + . . .+ (n− 1)3 + n3.

Que vaut S9 ?

10* Créez un programme qui calcule n! (c’est-à-dire n×(n−
1)× . . .×3×2×1), où n est une variable entière définie
au début du script.

11. Créez un programme qui contient deux variables en-
tières N et k et affiche la valeur de la somme

1 +
1

2k
+

1

3k
+ . . .+

1

Nk

En prenant k = 2, affichez le résultat pour des valeurs
de plus en plus grandes de N .

12. Créez un programme qui reçoit un message par la fonc-
tion input, et affiche le message à l’envers. Par exemple

Message -> Thonny est mon ami
Message inversé -> ima nom tse ynnohT

13. Créez un programme qui reçoit un message par la fonc-
tion input, et affiche le même message mais en “bé-
gayant”, c’est-à-dire, en répétant deux fois chaque mot.
Par exemple,

Message -> Vive Thonny !
Message bégayé -> Vive Vive Thonny Thonny !!

14. Créez un programme qui reçoit un entier N par la com-
mande input et qui affiche tous ses diviseurs dans la
console.

15. Un nombre est “parfait” s’il est égal à la somme de
ses diviseurs autres que lui-même. Par exemple, 6 =
3 + 2 + 1 est parfait. Modifiez votre programme de la
question précédente pour qu’il termine par un message
indiquant si le nombre entré est parfait.

16* La suite de Fibonacci (Fn)n∈N est définie par récurrence
(voir Annexe A, Section 2) par

Fn =

 1 si n = 0
1 si n = 1
Fn−2 + Fn−1 pour n ≥ 2

Créez un programme qui affiche les 1000 premiers termes
de cette suite. Afficher également les termes de la suite
(rn)n∈N des rapports consécutifs

rn =
Fn+1

Fn
.

Que remarquez-vous ?

17. Complétez le programme suivant :

b = ?? # Base entre 2 et 10
N_b = "??" # Ecriture en base b
(avec les chiffres 0,...,b-1)
... à vous de jouer
print(M_b)

Le programme définit d’abord une variable entière b, et
une chaîne de caractères N_b représentant un nombre N
en base b. Le but est que le programme affiche M_b, la
représentation en base b de M = N + 1.

18. Dans Thonny, cliquez sur “Outils”, “Gérer les paquets”.
Dans la barre de recherche, taper “random” puis cli-
quer sur rechercher. Dans les résultats, cliquer sur “ran-
dom11” et en bas de la fenêtre, cliquer sur “installer”.
Puis vérifiez que le programme ci-dessous fonctionne et
affiche des nombres aléatoires entre 1 et 100 (en l’exé-
cutant plusieurs fois) :

import random
a = random.randint(1,100)
print(a)

On se propose de programmer le jeu suivant : Python
tire un nombre entier au hasard entre 1 et 100. Le
joueur essaye de le deviner en entrant des valeurs. Le
programme indique pour chaque valeur incorrecte si elle
est trop petite ou trop grande, et affiche un message
lorsque le joueur a gagné. Créez un programme pour
jouer à ce jeu.

19. Inversement, on se propose de créer un programme ca-
pable de jouer au jeu précédent, mais cette fois, le joueur
(humain) pense à un nombre entre 1 et 100, et c’est l’or-
dinateur qui doit le deviner. À chaque tour, l’ordinateur
affiche sa tentative dans la console, et demande à l’uti-
lisateur d’entrer 1 si son nombre est plus grand et 0 s’il
est plus petit. Votre programme gagne s’il trouve votre
nombre en moins de 10 coups.

30

Chapitre 3

Tableaux

1 Introduction
Dans ce chapitre, nous allons apprendre à manipuler un nouveau type d’objets : les tableaux (ce que Python
appelle <list>, voir ci-dessous). Un tableau est une sorte de longue boîte contenant des cases numérotées
(à partir de 0), dans chacune desquelles on peut ranger un objet différent. C’est donc un peu comme une
“mémoire miniature”, si l’on se remémore la représentation schématique vue au Chapitre 1. Les objets
contenus dans les cases sont souvent appelés les éléments du tableau. On accède à l’élément qui se trouve
dans la case portant le numéro i par la syntaxe T[i].

Un tableau T

T[0] T[1] T[2] T[3]
<int> 1000 <str> "bonjour" <float>3.1415 <bool> True

On peut consulter et modifier directement le contenu de chaque case, et même ajouter ou retirer des
cases à la fin du tableau. Essayez par exemple les instructions suivantes, pour voir leur résultat

>>> T = [1000,3.1415,True] # assignation
>>> type(T)
>>> T # Affichage du tableau
>>> len(T) # Longueur du tableau
>>> T[0] # Consulter le contenu de la case numéro 0
>>> T[1] # Consulter le Contenu la case numéro 1
>>> T[2] = False # Modifier le contenu de la case numéro 2
>>> T
>>> T.append("le terme 'append' signifie 'adjoindre' en anglais")
>>> T.append(1+1) # Cette syntaxe avec un "." sera revue au chapitre sur les classes
>>> T
>>> len(T)
>>> T.pop() # Retire la dernière case du tableau et renvoie la valeur qui s'y trouvait
>>> T

On peut aussi créer un tableau de longueur 0, puis lui rajouter ses cases une par une :

>>> T = []
>>> T

31

[]
>>> len(T)
0
>>> T.append(0)
>>> T.append(1)
>>> T.append(2)
>>> T
[0,1,2]

Une autre possibilité est de créer de grands tableaux, si l’on anticipe déjà que l’on aura besoin de beaucoup
de place. Par exemple, si l’on ne veut rien mettre dans les cases pour l’instant, on peut utiliser l’objet None
(l’objet “rien”) comme ceci

>>> T = [None]*1000 # Crée un tableau vide de longueur 1000
>>> T
[None,None,None,None,...]

Tableaux ou listes ?

Les tableaux en Python s’appellent “list”, mais nous marquons la distinction avec les listes chaînées,
une structure de donnée radicalement différente des <list> de Python (c’est l’objet du Chapitre 8).
Les tableaux de Python ne sont pas non plus tout à fait des tableaux selon la définition habituelle, car
leurs éléments ne sont pas stockés dans des emplacements contigus en mémoire. Seules les adresses
des éléments du tableau sont rangées contiguement. Nous ne développerons pas plus précisément
comment les <list> sont implémentées ici.

Indexer les positions à partir de 0 ?

Cela peut paraître incompréhensible que Python ait choisi de noter T[0] la première case de T, T[1]
la deuxième case de T, et T[i-1] la i-ème case. Mais en réalité, c’est très logique : la case T[i] se
trouve i cases à droite de la case T[0] : le i n’est pas à voir comme un numéro, mais plutôt un
décalage par rapport à une référence, ici, 0. Une autre explication, peut-être plus convaincante, est
proposée par la Figure 3.1

2 Opérations sur les tableaux
Voici une liste de quelques opérations fondamentales sur les tableaux.
• Création. Pour créer un tableau, on peut placer une ou plusieurs expressions entre crochets, séparées
par une virgule. Chaque case du tableau contient alors l’évaluation de l’expression correspondante.

>>> T = [3+4,3.1415,"Vive "+"Thonny!",None,4%2 == 0]
>>> T
[7,3.1415,'Vive Thonny!',None,True]

32

Fig. 3.1 – Pourquoi appeler T[i] la i-ème case du tableau quand on peut l’appeler T[i-1] ?!

On peut également créer un tableau vide à N cases avec la syntaxe suivante :

>>> N = 10
>>> T = [None]*N
>>> T
[None,None,None,None,None,None,None,None,None,None]

Plus généralement, T*N produit un tableau obtenu en répétant T N fois. Ainsi

>>> N = 3
>>> T = [1,2]*N
>>> T
[1,2,1,2,1,2,1,2]

• Longueur du tableau. La commande len (pour “length” – longueur) donne la longueur du tableau,
c’est-à-dire, son nombre de cases.

>>> T = [1,2,3]*2
>>> T
[1,2,3,1,2,3]
>>> len(T)
6

• Accès aux éléments. On accède à l’élément en position i avec la syntaxe T[i]. Ceci produit une
erreur lorsque i dépasse la taille du tableau (donc quand i ≥ len(T))

>>> T = ["a","b",None]
>>> T[0]
'a'
>>> T[1]
'b'
>>> T[2] # Case vide : rien à afficher

33

>>> T[3] # Cette case n'existe pas -> erreur !
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list index out of range

On peut aussi accéder aux éléments depuis la fin du tableau. Par exemple, le dernier élément (premier
en partant de la fin) s’obtient avec T[-1], l’avant-dernier (deuxième en partant de la fin) avec T[-2],
etc. Ainsi, T[-i] est équivalent à T[N-i], où N est la longueur du tableau.

• Modification du contenu d’une case. On peut mettre une nouvelle valeur dans la case en position
i avec la syntaxe T[i] = <nouvelle valeur>, un peu comme pour une assignation. On peut donc
voir T[i] comme une variable.

>>> T = ["a","b",None]
>>> T[2] = "c"
>>> T
['a','b','c']

• Ajout d’un élément. La commande append permet de créer une nouvelle case à la fin du tableau et
d’y ajouter un élément. La syntaxe est la suivante :

>>> T = ["bonjour",3.1415,True]
>>> T
['bonjour',3.1415,True]
>>> T.append(1000)
>>> T
['bonjour',3.1415,True,1000]

• Retrait de la dernière case. Il est également possible de retirer la dernière case d’un tableau non
vide. Pour cela, on utilise la fonction pop, dont la syntaxe est la suivante

>>> T = ["bonjour",3.1415,True,1000]
>>> T.pop()
1000
>>> T
["bonjour",3.1415,True]
>>> a = T.pop()
>>> a
True
>>> T
["bonjour",3.1415]

Les parenthèses vides sont importantes. Notez que pop() renvoie aussi le contenu de la case retirée
(que l’on peut récupérer avec une variable si besoin), en plus de raccourcir le tableau.

• Slicing. Il est possible d’extraire une partie d’un tableau grâce à l’opération suivante, appelée “slicing”
(“slice” signifie “part”, comme dans “découper une part de cake”). En voici quelques exemples

34

>>> T = ['a','b','c','d','e']
>>> T[0:3] # Cases entre 0 (inclus) à 3 (exclus)
['a','b','c']
>>> T[2:5] # Cases entre 2 (inclus) et 5 (exclus)
['c','d','e']
>>> T[1:-1] # Cases entre 1 (inclus) et -1 -> la dernière (exclue)
['b','c','d']
>>> T2 = T[1:5] # -> T2 = ['b','c']
>>> T2[0]
'b'
>>> T2[0] == T[1]
True

Plus généralement, si T est un tableau et i et j deux entiers (positifs où négatifs), l’expression T[i:j] a
pour valeur le nouveau tableau [T[i] , T[i+1] , ..., T[j-1]] (notez que, comme pour les “range”
dans une boucle for, le premier indice est inclus, et le dernier est exclus, cf. Figure 3.1). Autrement
dit, T[i:j] est le “sous-tableau” obtenu en ne gardant que les cases i à j-1. On peut aussi écrire
T[:j] (équivalent à T[0:j]) ou encore T[i:] (équivalent à T[i:N] où N est la taille du tableau). La
syntaxe T[i:] est très pratique pour aller jusqu’à la fin du tableau.

Slicing pour des <str>

Le slicing peut aussi être utilisé, avec la même syntaxe, pour extraire des parties d’une chaîne de
caractères. Par exemple, si la variable message a pour valeur "Hello world!", les expressions
message[0:5], message[6:-1] et message[6:] ont pour valeur "Hello", "world", et world!, res-
pectivement.

3 Parcourir les éléments
Imaginez que vous souhaitez faire l’inventaire de tous les objets qui sont rangés dans un tableau, c’est-à-dire
les afficher un par un dans la console. Bien sûr, si c’est un petit tableau, vous pouvez simplement afficher
T[0], puis T[1], etc. jusqu’à la fin du tableau. Mais si le tableau est un peu trop long, ceci devient vite
pénible. Recopiez et exécutez le code suivant, qui utilise une méthode bien plus efficace :

T = [1,2,3]*50 # Crée un tableau de taille 150.
N = len(T)
print("Début de l'inventaire :")
for i in range(N):

print(T[i])
print("Terminé !")

Grâce à la boucle for, il suffit d’écrire l’instruction print une seule fois ! Lorsque ce code est exécuté,
conformément à la définition d’une boucle for, Python commence par exécuter l’instruction print(T[i])
pour i = 0 (ce qui aura donc pour effet d’afficher T[0]), puis de nouveau pour i = 1, et ainsi de suite,
jusqu’à i = N-1 (rappelez vous, la dernière valeur du “range” est exclue...). Comme T[N-1] est le dernier
élément du tableau, à la fin de la boucle tous les éléments auront bien été affichés. Cette méthode pour
consulter chaque case du tableau grâce à une boucle for est fondamentale ! On appelle cela parcourir le

35

tableau. On peut aussi l’utiliser pour modifier les valeurs des éléments. Par exemple, le programme suivant
remplace le contenu de chaque case par son carré :

T = [1,2,3,4,5]
N = len(T)
print("Avant :",T)
for i in range(1,N):

T[i] = T[i]**2
print("Après :",T)

>>>
Avant : [1,2,3,4,5]
Après : [1,4,9,16,25]

La boucle for peut aussi être utilisée tout simplement pour créer un tableau, et pour beaucoup d’autres
choses : les possibilités sont infinies, et chaque problème auquel vous serez confronté demandera une solution
un peu différente à partir des mêmes ingrédients.
Question 3. Comment créer un tableau de longueur 1000 contenant les nombres de 1 à 1000 ?

4 Un comportement inattendu
Il existe une différence surprenante entre le comportement des tableaux et celui des autres types variables
vues jusqu’ici. En effet, comparez ces deux programmes :

Programme 1 :

a = 10
b = a
b = b+1
print("a = ",a)
print("b = ",b)

>>>
a = 10
b = 11

Programme 2 :

T = ["Jacques","doit",10,"euros","à","Jeanne"]
U = T
U[2] = U[2]+1
print("T = ",T)
print("U = ",U)

>>>
T = ['Jacques','doit',11,'euros','à','Jeanne']
U = ['Jacques','doit',11,'euros','à','Jeanne']

36

Dans le premier programme, la modification de b n’a pas d’effet sur a, tandis que dans le second, la modifi-
cation de U en a un sur T. Il est capital de comprendre cette différence, sinon, vous perdrez vite le contrôle
de vos probrammes. Le but de cette section est d’expliquer la différence entre ces deux comportements : ils
sont dûs à l’intéraction entre deux concepts
(i) la mutabilité (les tableaux peuvent subir des modifications, ou “mutations”),
(ii) les alias (les assignations du type a = b ne se passent pas exactement comme on le croit).

Les tableaux sont “mutables”
Vous avez peut-être remarqué la ressemblance entre un tableau et une chaîne de caractères. Comme pour
les tableaux, on peut accéder aux éléments des chaînes de caractère avec la syntaxe message[i] et utiliser
le slicing. Il existe toutefois une différence très importante :

>>> message = "Hallo world"
>>> message[1] # Accès à l'élément : OK
'a'
>>> message[1] = "e" # Modification de l'élément : Pas question !
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

Python vous laisse consulter le contenu d’une chaîne de caractère autant que vous voulez, mais pas le modifier.
Au contraire, pour un tableau, la modification ne pose aucun souci :

>>> T = ["H","a","l","l","o"," ","w","o","r","l","d"]
>>> T[1]
'a'
>>> T[1] = "e"
>>> T
['H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd']

Les objets que Python accepte de modifier après leur création sont dits mutables : on peut leur faire subir
des “mutations”. On parle de mutation lorsque c’est directement l’objet en lui-même qui est modifié, sans
réassignation de la variable correspondante. En reprenant la métaphore de l’hôtel, imaginez le client (l’objet)
qui, sans prévenir, se “transforme” pendant la nuit. Il ne change pas de chambre, et le registre n’est pas
modifié. Mais la variable qui pointe vers lui a une nouvelle valeur : le client transformé.

Les tableaux sont le premier type mutable que nous rencontrons dans ce cours. Les mutations qu’ils
peuvent subir sont par exemple la modification d’un élément, l’ajout ou la suppression de cases, etc. Au
contraire, tous les types vus précédemment (<int>, <float>, <str>, <bool>) sont immutables. Si une
variable est assignée à une valeur immutable, la seule façon de modifier sa valeur est de la réassigner.

Création d’un alias
Dans le Chapitre 1, nous avons vu que les étapes de l’assignation étaient les suivantes :

Assignation “normale”

1. évaluer l’expression à droite du signe égal
2. créer un nouvel objet avec la valeur obtenue
3. le ranger dans la mémoire à une nouvelle adresse inoccupée.

37

Fig. 3.2 – Création d’un alias

4. ajouter au registre la ligne “<var>, <adr>”, où <var> est le nom de la variable et <adr> l’adresse
mémoire de l’étape 3.

Mais dans le cas particulier d’une assignation comme b = a ou U = T, c’est-à-dire, quand l’expression à
droite du signe égal est réduite à une seule variable 1, Python procède complètement différemment :

Assignation de la forme b = a

1. trouver dans le registre l’adresse associée à la variable a
2. ajouter au registre la ligne “b, <adr_a>”, où <adr_a> est l’adresse mémoire de l’étape 1.

Ainsi, après ces instructions, la variable b “pointe” vers le même emplacement en mémoire que a, donc a pour
valeur le même objet (voir Figure 3.2). Autrement dit, Python évite de dupliquer cet objet. Il utilise un seul
et même objet comme valeur commune pour deux variables différentes. Les noms a et b sont deux étiquettes,
ou deux alias, pour se référer à un seul et même “client de l’hôtel”. De même, après les instructions

>>> a = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] # Assignation normale
>>> b = a # Alias
>>> c = b # Alias
>>> d = c # Alias

un seul tableau (de longueur 16) est créé en mémoire, et les quatre variables a,b,c,d se réfèrent toutes à ce
même tableau. L’intérêt, bien sûr, est d’éviter de gaspiller de l’espace mémoire en recopiant quatre fois le
même tableau !

Alias et cases d’un tableau

La création d’alias s’applique aussi pour les assignations de la forme a = T[i], ou T[i] = a, c’est-à-
dire, si l’expression à gauche et/ou à droite du signe égal n’est pas une variable, mais une case d’un
tableau. Ici aussi, a et T[i] seront deux alias d’un même objet. En fait, il est utile de considérer
T[i] comme une variable à part entière.

1ou, plus généralement, quand elle est elle-même assignable

38

Mutabilité + alias = danger
Revenons à présent aux Programme 1 et Programme 2 du début de cette section. Pour le premier :

a = 1000 # Assignation (normale) à un objet <int> 1000 (immutable)
b = a # Création d'un alias.
b = b+1 # Réassignation de b à un *nouvel* objet <int> 1001

même si la deuxième ligne crée un alias, l’objet commun <int> 1000 est immutable. Il est en quelque sorte
“protégé”, en “lecture seule”. La variable a peut donc dormir sur ses deux oreilles, sa valeur ne peut tout
simplement pas être modifiée par qui que ce soit. L’assignation b = b+1 a pour effet de créer un autre objet.
Après cette instruction, b n’est plus un alias de a. La situation est différente dans le Programme 2 :

T = ["Jacques","doit",10,"euros","à","Jeanne"] # Assignation (normale) à un tableau
#(mutable !)
U = T # Création d'un alias. T et U peuvent tous deux modifier l'objet commun
U[2] = U[2]+1 # Attention !!! Mutation. L'objet commun a été modifié.

Cette fois, T et U contrôlent tous les deux un même objet qu’ils peuvent tous deux modifier (comme une
ardoise de dépenses partagée). Toute modification faite par U a un effet sur l’objet commun, donc sur la
valeur de T. Réciproquement, T aussi peut modifier l’objet commun, et donc la valeur de U. Essayez par
exemple

T = [] # Tableau vide
U = T # Alias.
T.append("c'est T le plus beau !")
U.append("c'est U le plus fort !")
print("T = ",T)
print("U = ",U)

39

Exercices du Chapitre 3
Conseil : Pour ces exercices, créez un dossier (par exemple TP_Tableaux) et enregistrez vos réponses aux questions dans
un fichier .py par question. Alternativement, on peut organiser le programme à l’aide de fonctions (voir le Chapitre 4).

Tableaux : manipulations de base
1* Créez un programme carres1a100.py qui crée un tableau

de longueur 100 contenant en position i le nombre i2 (avec
la première position i = 0).

2* Créez un fichier moyenne.py avec le programme suivant

T = [15,12,16.5,9,14]
... à vous de jouer ...
print("Moyenne des éléments de T : ",moyenne)

Le but est d’afficher la moyenne des éléments de T. Il faut
que le programme fonctionne même en modifiant le ta-
bleau T défini à la première ligne (sans rien changer au
reste du programme).

3* Même question avec un programme max_tableau.py qui
affiche le plus grand élément de T au lieu de la moyenne.

4. Complétez le programme pairs_seulement.py suivant

T = [5,4,7,9,8]
T2 = []
... à vous de jouer ...
print("Entiers pairs : ",T2)

Le but est d’afficher un tableau qui contient les éléments
pairs de T. Comme précédemment, le programme doit
fonctionner même si on modifie le tableau T dans la pre-
mière ligne.

5. Dans cet exercice et le suivant, on demande de ne pas utili-
ser la fonction + sur les tableaux (sinon, l’exercice devient
un peu facile !). Complétez le programme concat.py sui-
vant

T1 = [1,2,3,4]
T2 = [5,6]
... à vous de jouer ...
print("Tableau concaténé : ",T)

Le but est d’afficher un tableau contenant les éléments de
T1 et T2 à la suite l’un de l’autre (donc ici, [1,2,3,4,5,6]).
Le programme doit aussi fonctionner en changeant les ta-
bleaux T1 et T2 dans les deux premières lignes.

6. Même question que ci-dessus, mais sans utiliser la fonction
append. 2

2En fait, il existe une commande Python dédiée pour concaténer

7* Complétez le programme supprimer_case.py suivant

T = [3,1,4,1,5]
i0 = 3
... à vous de jouer ...
print(T)

Le but est de retirer la case T[i0] du tableau T (ici, il
faut donc que le programme affiche [3,1,4,5]). Dans
cette question, le tableau T ne doit pas être réassigné :
seules les mutations sont autorisées. Indice : utilisez la
fonction pop() et “jouez aux chaises musicales” avec les
éléments du tableau.

8* Complétez le programme inserer.py suivant

T = [3,1,4,5]
a = 1 # élément à insérer
i0 = 3 # Position de l'élément à insérer
... à vous de jouer ...
print(T)

Le but est d’insérer l’élément a dans le tableau, de sorte
qu’il se retrouve dans la case T[i0]. Comme dans la ques-
tion précédente, le tableau T peut être muté, mais pas ré-
assigné. Indice : utilisez une méthode analogue à l’exercice
précédent.

9* Complétez le programme copie_tableau.py suivant.

T = ["a",3.14,1000,True]
... à vous de jouer ...
print("T = ",T)
print("Tcopie = ",Tcopie)
T et Tcopie doivent être identiques
Tcopie.append(0) # Mutation de Tcopie
print("Tcopie =",Tcopie)
print("T = ",T)
T ne doit pas avoir changé de valeur.

Le but est de créer une copie qui ne soit pas un alias de
T. Ainsi, la mutation de Tcopie ne doit pas modifier la
valeur de T.

deux tableaux : T1 + T2. On pourra utiliser cette commande par la
suite.

40

Tri
Trier un tableau est un problème fondamental en program-
mation. Nous verrons plusieurs méthodes ici et dans les
prochains chapitres. Nous commençons ici par un mé-
thode très naturelle : le tri par insertion, qui est celui que
nous utilisons par exemple pour trier un paquet de carte
entre nos mains.

10. Dans un sous-dossier Tri, créez un programme insertion.py
comme ceci :

U = [1,3,7,9,10] # Un tableau *déjà trié*
a = 8 # élément à insérer
... à vous de jouer ...
print(U)

En supposant que U est déjà trié (par ordre croissant), le
but d’insérer le nouvel élément a dans U à la bonne place,
de sorte qu’à la fin du programme, U soit encore trié. Le
tableau U pourra être muté, mais pas réassigné. On pourra
s’inspirer du programme inserer.py vu dans un exercice
précédent.

11. Créez un programme tri.py comme ceci

T = [3,9,7,10,1,8] # Tableau à trier

qui reprend le programme précédent en l’entourant d’une
boucle for. L’idée est d’insérer, un par un, les éléments
de T dans un tableau U initialement vide.

12. Créez un programme mediane.py qui calcule la médiane
d’un tableau de valeurs numériques. On pourra commen-
cer par trier ce tableau.

13. (Question bonus) Pouvez-vous modifier votre tri par in-
sertion de manière à ce qu’il n’utilise que des mutations
du tableau T, sans créer un nouveau tableau U ?

Mini-projet : résolution de Sudoku
Pour finir cette feuille d’exercice, nous proposons un exer-
cice un peu plus long qui pourra être votre premier mini-
projet de programmation. Nous utiliserons des fonctions
Python (sans quoi, l’organisation du programme devient un
peu fastidieuse). Il est donc nécessaire de lire le Chapitre 4
avant de continuer.

Un sudoku est une grille de 3 × 3 cellules carrées, cha-
cune décomposée en 3×3 cases. Chaque case peut contenir
un chiffre entre 1 et 9 ou être vide (on utilisera le chiffre
0 dans ce cas). Un sudoku est invalide si un chiffre (autre
que 0) est répété au sein d’une ligne, colonne, ou cellule, et
impossible s’il n’y a aucun moyen de compléter toutes les
cases vides sans le rendre invalide. On représente un Su-
doku par un tableau T de longueur 81, où les neuf premières

cases représentent la première ligne du Sudoku, puis les 9
suivantes la deuxième ligne, et ainsi de suite. On note (i, j)
la case qui se trouve à la ligne i et la colonne j, 1 ≤ i, j ≤ 9.

11. Créez une fonction sudoku_vide() qui renvoie un tableau
T représentant le sudoku vide.

12. Créez une fonction afficher_sudoku(T) qui affiche dans
la console le sudoku représenté par le tableau T. Voici par
exemple un affichage possible pour le Sudoku vide :

1 2 3 4 5 6 7 8 9
||-----------||-----------||-----------||

1 || | | || | | || | | ||
2 || | | || | | || | | ||
3 || | | || | | || | | ||
||-----------||-----------||-----------||

4 || | | || | | || | | ||
5 || | | || | | || | | ||
6 || | | || | | || | | ||
||-----------||-----------||-----------||

7 || | | || | | || | | ||
8 || | | || | | || | | ||
9 || | | || | | || | | ||
||-----------||-----------||-----------||

13. On peut aussi représenter un Sudoku par un code de 81
chiffres entre 0 et 9, avec 0 correspondant aux cases vides.
Créez une fonction importer_sudoku(s) qui crée le Su-
doku représenté par la chaîne de caractères s. Affichez de
cette manière les sudokus donnés à la fin de cette feuille
d’exercices.

14. Vérifiez que la case (i, j) du Sudoku correspondant à la
case n = 9(i − 1) + j − 1 du tableau T. Réciproquement,
vérifier que la case n du tableau correspond à la case (q+
1, r + 1) du Sudoku où q et r sont le quotient et le reste
de la division euclidienne de n par 9.

15. Si l’on numérote les cellules de 1 à 9 de gauche à droite
et de haut en bas, vérifier que la case (i, j) du sudoku se
trouve dans la cellule k = 3I + J + 1 où I et J sont les
quotients de la division euclidienne de i− 1 et j− 1 par 3.

16. Créez une fonction contenu(T,i,j) qui renvoie le contenu
de la case (i, j) du Sudoku représenté par T, et une fonction
ecrire(T,i,j,c) qui écrit le chiffre c dans cette case.

17. Créez une fonction coordonnées(n) qui prend en entrée
un numéro de case du tableau T et renvoie un tableau
[i,j,k] tels que T[n] se trouve dans la ligne i, la colonne
j et la cellule k du Sudoku.

>>> coordonnées(0)
[1,1,1]
>>> coordonnées(7)
[1,2,3]

41

18. Créez une fonction indices_cellule(k) qui renvoie un
tableau contenant les indices n des neufs cases contenues
dans la cellule k. Par exemple

>>> indices_cellule(1)
[0,1,2,9,10,11,18,19,20]

19. De même, créez des fonctions

indices_ligne(i) / indices_colonne(j).

renvoyant les coordonnées des cases de la ligne i/de la
colonne j.

20. Créez une fonction possibilites(T,i,j) qui renvoie un
tableau contenant tous les chiffres qui peuvent être écrits
dans la case (i, j) du Sudoku sans le rendre invalide.

21. Créez une fonction verifier(T) qui affiche un message
disant si le sudoku est valide ou non, et s’il est entiè-
rement résolu ou non, en indiquant le nombre de cases
manquantes.

22. Créez une fonction auto_completer(T,v) qui parcourt
chaque case (i, j), et, s’il n’y a qu’une seule valeur pos-
sible dans cette case, y écrit le chiffre correspondant. La
fonction renverra un entier égal au nombre de nouveaux
chiffres écrits dans T. La variable v est un entier qui contrôle
la “verbosité” de la fonction. Si v vaut 0, la fonction n’af-
fiche rien. Si v vaut 1 ou plus, on affichera des infor-
mations, comme par exemple les coordonnées de chaque
chiffre qui a été trouvé. On renverra une erreur si on
s’aperçoit que le Sudoku est impossible.

23. Créez une fonction resoudre(T,v) qui tente de résoudre
un Sudoku à l’aide de cette technique, et testez-la avec les
Sudokus de la page suivante. Commentez.

24. Dans une cellule, il arrive qu’un chiffre ne puisse être placé
que dans une seule case. Créez une fonction

chercher_cellule(T,k,v)

qui applique cette idée. Ecrire des fonctions analogues
pour les lignes et les colonnes.

25. Améliorez la fonction resoudre, et appliquez-là au Su-
doku numéro 5.

26. Imaginez et décrivez en quelques lignes une approche pos-
sible pour améliorer votre algorithme.

42

Quelques Sudokus faciles...

Importez-les avec les codes ci-dessous
1. 090064050007900300000010007072803040008000900600002000080406030900001000050000408
2. 017809000008000045020407000090500034000000600000914008060000000570000860000092000
3. 800007000050230006000008072340500200005090400200000000000040030001980000007620198
4. 009028400008001000000000000090500000004009070100030650300400007057006040200000060

Un Sudoku plus résistant...

Son code est
5. 200009000090500060815070900100067090900450002030000008050000820400000016300200007

43

Chapitre 4

Fonctions
“En permettant au mécanisme de combiner ensemble des symboles généraux dans des successions d’une
variété et d’une étendue illimitées, un lien unificateur est établi entre les opérations de la matière et les
processus mentaux abstraits de la branche la plus abstraite des sciences mathématiques.”

Ada Lovelace, Note A, traduction de “Sketch of the Analytical Engine” (1843).

Dans presque tous les langages de programmation, il est possible de donner un nom à un morceau de
programme, de manière à pouvoir le réutiliser plus tard sans avoir à le recopier entièrement. Pour cela, on
utilise des fonctions. Les fonctions peuvent recevoir des entrées (aussi appelés arguments) et renvoyer des
sorties qui dépendent de ces entrées (voir Figure 4.1).

Fig. 4.1 – Représentation schématique d’une fonction.

Par exemple, nous avons rencontré la fonction len dans le Chapitre 3 : elle reçoit un tableau en entrée,
et renvoie sa longueur en sortie. Dans ce chapitre, nous allons apprendre à définir nos propres fonctions en
Python, et voir ce qu’il se passe lorsqu’elles sont exécutées.

1 Fonctions et algorithmes
Commençons par une distinction importante entre fonction et algorithme.

Définition 4.1 : Algorithme

Un algorithme est une suite finie d’instruction, choisies parmi un nombre fini d’instructions élé-
mentaires (opérations arithmétiques, comparaisons, assignations, instructions conditionnelles, etc.).
L’algorithme est exécuté à partir d’une ou plusieurs données en entrée, et produit un ou plusieurs
résultats en sortie.

44

On peut comparer un algorithme à une recette de cuisine : les données en entrées étant les quantités des
ingrédients, ou le nombre d’invités, et le résultat en sortie étant le plat à déguster. Un exemple important-
d’algorithme est celui qui permet de calculer la somme, la soustraction, la multiplication et la division de
deux nombres entiers avec un crayon et un papier. 1 Les programmes Python que vous avez écrits sont des
algorithmes (par exemple celui qui permet de calculer la représentation binaire d’un nombre).

Comme un automate

Pour exécuter un algorithme, il n’y a pas besoin de le comprendre, ni de prendre la moindre initiative :
il suffit de suivre scrupuleusement les instructions, une par une. Si vous avez posé suffisamment de
multiplications, vous n’avez plus besoin de réfléchir : vous pouvez suivre la méthode comme un
automate. L’idée géniale qui mena à l’invention de l’ordinateur, ce fut justement de voir que ces
actions étaient tellement automatiques que même une machine pourrait les réaliser !

En général, un algorithme a un but : on cherche à obtenir des sorties qui vérifient une certaine relation
par rapport aux entrées. On dit que l’algorithme réalise, ou “calcule” une fonction :

Définition 4.2 : Fonction

Une fonction f est une relation bien définie entre des entrées e1, . . . , en et des sorties s1, . . . , sm, de
sorte que la valeur des sorties soit définie de manière unique par la valeur des entrées. On note alors

s1, . . . , sm = f(e1, . . . , em).

Exemples de fonctions :
- La fonction reste prend en entrée deux arguments, des nombres a et b, et renvoie en sortie le reste de la
division Euclidienne et a par b. Ainsi, reste(15, 7) = 1 et reste(7, 15) = 7.
- La fonction PGCD prend en entrée deux entiers a et b, et retourne en sortie le plus petit grand entier d
qui divise à la fois a et b. Par exemple, PGCD(35, 49) = 7.
- La fonction Détecteur-de-mensonge prend en entrée une proposition, et renvoie en sortie un booléen, qui
est la valeur de vérité de la proposition.
- La fonction Diophante, prend en argument un polynôme P (x1, . . . , xn) à coefficients entiers en n variables
et renvoie Vrai s’il existe des entiers x1, . . . , xn tels que P (x1, . . . , xn) = 0, et Faux sinon.

Dans ces quatre exemples, nous définissons la fonction sans donner d’algorithme qui la calcule. C’est ce
qui s’appelle une spécification. Même si la spécification d’une fonction est parfaitement claire, il n’est pas
forcément facile de trouver un algorithme correspondant. Dans certains cas, on n’est même pas sûr qu’un tel
algorithme existe, comme dans les deux derniers exemples ci-dessus (certaines fonctions, comme Diophante,
ne sont pas “calculables” ! 2) D’autre part, il n’est pas toujours évident de vérifier qu’un algorithme remplit
bien la fonction spécifiée : ceci peut nécessiter une démonstration (voir Chapitre 5).

Remarque : En programmation, pour définir une fonction, on est obligé de fournir un algorithme pour
la calculer. Il est donc fréquent d’utiliser le mot fonction pour parler à la fois de la fonction et de l’algorithme.

1Cet exemple est à l’origine même du mot algorithme : l’étymologie remonte au mathématicien persan al-Khwarizmi, qui,
autour de l’an 825 de notre ère, a écrit kitab al-hisab al-hindi (“livre du calcul indien”) et kitab al-jam’ wa’l tafriq al-hisab
al-hindi (“addition et soustraction en arithmétique indienne”). Ces livres ont été traduit quelques siècles plus tard en latin,
avec le nom d’al-Khwarizmi latinisé en “Algorizmi”.

2Le fait que Diophante soit ou non calculable est l’un des 21 problèmes posés par David Hilbert en 1900. La réponse négative
a été démontrée par Youri Matiiassevitch en 1970.

45

2 Exécution d’une fonction
On considère la fonction PGCD, dont la définition est la suivante :

Spécification : PGCD
Entrée(s) : a, b, deux nombres entiers.
Sortie(s) : le plus grand nombre entier d qui divise à la fois a et b.

Il existe un algorithme célèbre pour calculer cette fonction : l’algorithme d’Euclide, donc voici la définition.

Définition : Euclide
Entrées : a,b, deux nombres entiers.
1. Assigner r ← reste de la division Euclidienne de a par b
2. Tant que r > 0,

(a) Assigner a← b

(b) Assigner b← r

(c) Assigner r ← reste de la division Euclidienne de a par b
3. Terminer.

Sorties : la valeur finale de b.
Fin de la définition de Euclide.

Validité de l’algorithme d’Euclide ?

Si vous ne voyez pas pourquoi l’algorithme d’Euclide calcule le PGCD, c’est parfaitement normal :
cela ne saute pas aux yeux ! Il est généralement difficile, simplement en lisant un programme, de
comprendre à quoi il sert ou pourquoi il fonctionne. Pour cela, on a parfois besoin d’une démonstra-
tion. Dans le cas de l’algorithme d’Euclide, celle-ci sera donnée au Chapitre 5. Pour l’instant, cette
question n’est pas importante : ce qui compte pour l’instant, c’est d’apprendre comment exécuter
“bêtement” l’algorithme.

Nous allons exécuter Euclide avec les arguments 28 et 36. Tel un véritable “ordinateur humain” (et
comme d’autres l’ont fait avant vous, voir la Figure 4.2) munissez-vous d’un papier et un crayon, et effectuez
vous-mêmes les calculs qui suivent au fur et à mesure. En vous mettant ainsi “dans la peau de l’ordinateur”,
le but est que vous compreniez exactement ce qui se passe lorsqu’il exécute les instructions d’un programme.
C’est le minimum pour pouvoir ensuite être vous-même capables de mettre au point la bonne suite d’ins-
truction pour atteindre un objectif que vous vous êtes fixé. 3 Le plus important ici est de bien comprendre
les étapes d’appel, entrée et sortie de la fonction.
• Avant l’algorithme. Supposons que nous étions déjà en train de faire des calculs. Nous avons une
“mémoire” qui contient des variables. Nous utiliserons une feuille pour matérialiser cette mémoire.
Disons par exemple qu’elle contient a : 1002, m:"Hello world" et pi : 3.1415. Nous allons représenter
à chaque étape l’état actuel de notre mémoire comme ceci :
Mémoire : a:1002, m:"Hello world", pi:3.1415.

• Appel de la fonction. Supposons que nous arrivons à l’instruction

d←Euclide(28,36).
3“Connais ton ennemi et connais-toi toi-même, tu vaincras cent fois sans péril.” Sun Tzu, L’art de la guerre.

46

Fig. 4.2 – Des employé(e)s – majoritairement des femmes... – effectuant des calculs en 1914, aidé(e)s par un
“comptometer”, une sorte de calculatrice mécanique, pour gagner du temps sur les opérations arithmétiques.

C’est une assignation. Donc comme Python, nous dévons d’abord évaluer l’expression Euclide(28,36)
qui se trouve à droite de la flèche. Cette expression est une séquence d’appel : la fonction Euclide
a été “appelée” sur les entrées 28 et 36. Ceci nous signale qu’il faut entrer dans l’algorithme nommé
“Euclide” avec les arguments d’entrée 28 et 36.
Mémoire : a:1002, m:"Hello world", pi:3.1415.

• Entrée dans l’algorithme. Pour entrer dans un algorithme, on prend une nouvelle feuille vierge pour
représenter notre mémoire dans cet algorithme. Pendant toute l’exécution de Euclide, nous plaçons
cette nouvelle feuille par-dessus la feuille mémoire précédente contenant les variables a, m et pi. Entrer
dans l’algorithme, c’est comme entrer dans un nouvel “univers”, et la feuille blanche symbolise notre
mémoire dans ce nouvel univers. Tout ce à quoi nous avons accès dans ce nouvel univers, ce sont les
arguments d’entrée, ici 28 et 36. Pour prendre ces-derniers en compte, nous commençons par faire
a← 28 et b← 36.
Mémoire : a:28, b:36

• Instruction 1. La première instruction de Euclide nous demande d’assigner le reste de la division de
a par b (ici, 28), à une variable nommée r.
Mémoire : a:28, b:36, r:28

• Instruction 2. Comme nous l’avons vu au Chapitre 2, la seconde instruction est nous demande de
vérifier si r > 0 vaut Vrai. Si oui, nous devons exécuter les instructions (a)-(b)-(c) puis revenir à
l’instruction 2, sinon, il faut aller directement à l’instruction 3. Puisque r vaut 28, nous entrons dans
le bloc.
Mémoire : a:28, b:36, r:28
• Instruction (a). On assigne la valeur de b (donc 36) à la variable a

Mémoire : a:36, b:36, r:28.
• Instruction (b). On assigne la valeur de r (donc 28) à b.

Mémoire a:36, b:28, r:28.
• Instruction (c). On assigne le reste de la division Euclidienne de a par b (donc 8) à r, puis on
revient à l’instruction 2.
Mémoire a:36, b:28, r:8.

• Instruction 2. Comme r vaut 8, la condition est vraie, donc nous entrons de nouveau dans le bloc.
Mémoire a:36, b:28, r:8.

47

• Instruction (a). On assigne la valeur de b à a.
Mémoire a:28, b:28, r:8
• Instruction (b). On assigne la valeur de r à b.

Mémoire a:28, b:8, r:8.
• Instruction (c). On assigne le reste de la division de a par b (ici 4) à r, puis on revient à
l’instruction 2.
Mémoire a:28, b:8, r:4.

• Instruction 2. Comme r vaut 4, il faut encore entrer dans le bloc “tant que”.
• Instruction (a). On assigne la valeur de b à a.

Mémoire a:8, b:8, r:4.
• Instruction (b). On assigne la valeur de r à b.

Mémoire a:8, b:4, r:4.
• Instruction (c). On assigne le reste de la division de a par b (ici 0) à r, puis on revient à
l’instruction 2.
Mémoire a:8, b:4, r:0.

• Instruction 2. D’après notre feuille, (r > 0) vaut Faux (enfin !). Nous allons à l’instruction 3.
Mémoire a:8, b:4, r:0.

• Instruction 3. Nous terminons l’exécution de la fonction en renvoyant la valeur de b, qui est 4.
Mémoire a:8, b:4, r:0.

• Sortie de l’algorithme. Nous avons fini le calcul. Nous ressortons de “l’univers” de l’algorithme. Nous
jetons définitivement la feuille contenant nos calculs intermédiaires et retrouvons en-dessous la feuille
mémoire que nous avions recouverte. Les variables b et r n’existent donc plus, et la variable a a retrouvé
sa valeur précédente, 1002. Tout ce que nous avons conservé de l’univers de la fonction, c’est le résultat
de sortie, 4. Nous étions en train de lire l’instruction d ← Euclide(28,36), donc nous assignons 4 à
la variable d.
Mémoire a:1002, m:"Hello world", pi:3.1415, d:4.

Le résultat obtenu est 4, qui est en effet le PGCD de 28 et 36. Le lecteur est invité à exéctuer de la même
manière a← Euclide(231,154).

Appeler une fonction/passer des arguments

En programmation, on dit souvent que l’on “appelle” une fonction sur des arguments d’entrée. On
dit aussi que les arguments sont “passés” à la fonction, et qu’elle “renvoie” des sorties. Par exemple,
pour savoir quel est le PGCD de 231 et 154, on appelle Euclide sur les arguments 231 et 154. La
syntaxe habituelle pour appeler la fonction est d’écrire le nom de cette fonction suivi des arguments
entre parenthèse. Dans notre exemple, cela donne donc : Euclide(231,154). Attention : définir une
fonction et l’appeler sont deux choses différentes, ce que l’on peut avoir tendance à oublier lorsqu’on
débute. Définir une fonction, c’est un peu comme écrire une recette, et appeler cette fonction, c’est
demander à Python de se mettre à la cuisiner – avec les quantités que vous aurez passées en argument.

3 Les fonctions en Python
Exemples
Le programme suivant contient la traduction de l’algorithme d’Euclide en langue Python :

48

def Euclide(a,b):
Renvoie le PGCD de a et b
r = a % b
while r > 0:

a = b
b = r
r = a % b

return b

>>> Euclide(28,36)
4
>>> d = Euclide(231,154)
>>> d
77

Notez qu’on a indiqué la spécification en commentaire : ceci est optionnel mais souvent bienvenu. Plus
généralement, une définition de fonction a la syntaxe suivante en Python

def nom_de_ma_fonction(arg1,arg2,...,argN):
Bloc indenté
Ecrire des instructions avec arg1,arg2 etc.
Renvoi du résultat :
return r1,r2,...,rM

La définition s'arrête quand l'indentation revient à la verticale de "def"

Voici un exemple de définition de fonction et de son exécution par Python :

def isEven(N):
Renvoie True si N est pair, et False si N est impair.
if N%2 == 0:

return True
else:

return False

Il faut appeler la fonction pour qu'elle soit exéctuée, sinon il ne se passe rien !
a = 4
b = 5
print(isEven(a)) # Appels de la fonction
print(isEven(b))

True
False

Cette fonction renvoie True si N divisé par 2 donne un reste 0 – donc si N est pair (“even” en anglais) – et
False sinon.

Voici un exemple un peu plus sophistiqué, dans lequel on veut calculer la somme des chiffres d’un entier.
Il faut s’y prendre d’une manière un peu astucieuse, en modifiant petit à petit l’entier sur lequel on fait les
calculs. On retire le chiffre des unités, on l’ajoute à une variable contenant la somme temporaire des chiffres,
et on recommence, jusqu’à avoir épuisé tous les chiffres. De nombreux programmes utiliseront ce type de
logique.

49

def somme_des_chiffres(N):
Renvoie la somme des chiffres de N
somme = 0 #Somme des chiffres vus jusqu'ici
while N > 0:

print("valeur de N :",N)
print("valeur de somme :",somme)
a = N%10 # chiffre des unités
b = N//10 # chiffres avant les unités
somme = somme + a # On ajoute "a" à la somme en cours
N = b # On garde seulement le reste des chiffres et on recommence

return somme

Recopiez le code précédent et appelez la fonction sur l’entier de votre choix pour vérfier qu’elle fonctionne
bien. Imaginez l’exécution de l’algorithme et assurez-vous de comprendre pourquoi il fonctionne. N’hésitez
pas à “décommenter” (retirer le #) les deux instructions sous le “while” pour afficher les étapes de calcul
lors de l’exécution.

Syntaxe
Voici les éléments importants de la syntaxe d’une fonction :
• Le mot-clé def signale le début de la définition d’une fonction. La définition est placée dans le bloc
indenté sous def.

• Après def, on écrit le nom que l’on souhaite donner à notre fonction (comme pour les variables, on
peut utiliser des lettres, des chiffres et _, mais pas commencer par un chiffre).

• Juste après le nom de la fonction, on indique entre parenthèses les noms “génériques” que l’on donne
aux arguments d’entrée dans la définition de la fonction (comme les noms “a” et “b” dans l’algorithme
d’Euclide). On peut en mettre autant que l’on veut (y compris 0 ; dans ce cas on laisse les parenthèses
vides). Lorsque la fonction sera appelée, il faudra utiliser le nombre correspondant d’arguments d’en-
trées, et les variables génériques seront remplacées par ceux-ci (par exemple, l’appel Euclide(28,36)
nous dit qu’il faut exéctuer l’algorithme dans le cas particulier où a = 28 et b = 36). Les noms géné-
riques peuvent être choisis librement comme toute autre variable, et peuvent même être des noms déjà
utilisés : ils remplacent les variables précédents à l’intérieur de la fonction, et n’existent pas en dehors
de la fonction. On dit que ce sont des variables locales (ou “muettes”).

• Le mot-clé return sert à dire ce que renvoie la fonction en sortie. Lorsque cette instruction est atteinte,
on interrompt immédiatement l’exécution de la fonction (même s’il reste des instructions plus loin à
l’intérieur de celle-ci), et on poursuit le reste du programme : on dit que l’on sort de la fonction. Une
fonction peut contenir plusieurs fois le mot-clé return (c’est le cas de la fonction isEven ci-dessus).

Appel d’une fonction
Voici la définition d’une fonction très simple qui renvoie la somme de deux entrées :

def somme(a,b):
return a + b

Pour exécuter la fonction somme, il va falloir choisir des arguments d’entrées à mettre à la place des
variables “muettes” a et b, puis appeler la fonction avec ces arguments, par exemple comme ceci :

50

>>> somme(19,23) # Exécute somme(a,b) avec a = 19 et b = 23
42
>>> x = 10
>>> y = 11
>>> z = somme(x,y) # Exécute somme(a,b) avec a = x et b = y, assigne le résultat à z
>>> z
21

Notez que cela ne pose pas de problème d’écrire somme(x,y) au lieu de somme(a,b). Lors de l’appel de la
fonction, il n’est pas nécessaire de choisir les mêmes noms d’arguments que dans la définition de celle-ci :
nos arguments seront automatiquement renommés en a et b par Python au moment de l’exécution. En effet,
lorsque vous appelez la fonction somme, il faut imaginer qu’avant de débuter l’exécution, Python commence
par assigner la valeur de vos arguments d’entrées aux variables a et b. Dans le premier exemple, il fait donc
a = 19 et b = 23, dans le second, il fait a = x et b = y.

Sorties multiples
Il est possible de renvoyer plusieurs sorties avec Python : il suffit de séparer les différents résultats de sortie
par une virgule. Par exemple :

def min_max(a,b):
Renvoie min(a,b),max(a,b)
if a < b:

return a,b
else:

return b,a

Dans ce cas, lorsqu’on appelle la fonction, on peut réceptionner les résultats de sortie avec plusieurs variables
séparées par une virgule :

>>> p = isEven(42)
>>> p
True
>>> a,b = min_max(42,17)
>>> a
17
>>> b
42

Appels en cascade
Une fonction peut être appelée au sein d’une autre fonction. Par exemple, la fonction suivante vérifie si un
nombre est impair en utilisant un appel à la fonction isEven :

def isOdd(N):
Détermine si N est impair
if isEven(N):

return False

51

else:
return True

Il n’y a pas de limite à ce principe : une fonction peut appeler une fonction qui elle-même appelle une autre
fonction etc., comme dans l’exemple suivant (vous verrez des exemples moins artificiels dans les exercices à
la fin de ce chapitre).

def f1(n):
a = f2(n+2,n)
b = a*2
return b

def f2(a,b):
c = f3(a+b,a-b)
d = c+1
return d

def f3(u,v):
return u*v

>>> f1(10) # Va appeler f2(12,10) qui va appeler f3(22,2)
90

A chaque entrée dans une nouvelle fonction, Python place un nouvelle feuille mémoire vierge au sommet de
sa pile de feuilles mémoire, et à chaque sortie de fonction, la feuille du haut de la pile est retirée. Ce principe
est illustré ci-dessous pour l’exécution de f1(10) :

Fig. 4.3 – Pile d’exécution pour f1(10)

52

4 Fonctions sur des tableaux
Parmi les arguments d’entrée d’une fonction, on peut aussi passer des tableaux. Puisque les tableaux sont
mutables, on peut créer des fonctions qui ne renvoient aucune sortie, mais qui modifient, ou “mutent” le
tableau qui leur a été passé en argument (voir la Section 4 du Chapitre 3). Par exemple, la fonction suivante
reçoit un tableau d’entiers en argument, et “incrémente” (c’est-à-dire, ajoute 1 à) tous les éléments du
tableau, puis renvoie “None” (l’objet “rien”).

def incremente_tableau(T):
N = len(T)
for i in range(N): # Parcours des éléments

T[i] = T[i] + 1
return None

Appelons cette fonction dans la console :

>>> T = [1,2,3]
>>> incremente_tableau(T)
>>> incremente_tableau(T)

Cela n’affiche rien, car la fonction ne renvoie rien. Mais le tableau a changé :

>>> T
[3,4,5]

Notez que ce comportement n’a pas lieu pour les immutables :

def incremente(a):
a = a + 1
return None

>>> a = 1000
>>> incremente(a)
>>> incremente(a)
>>> a
1000

Il faut donc retenir que lorsqu’une fonction reçoit un type mutable en argument, elle peut le modifier et cette
modification est permanente, même après la sortie de la fonction.

return None

On crée souvent des fonctions qui ne renvoient rien, mais “font quelque chose” (afficher du texte dans
la console, modifier un objet mutable, etc.). Parfois, on peut les créer par erreur, en oubliant d’écrire
l’instruction return. Dans ce cas, Python accepte malgré tout votre définition et considère que la
fonction renvoie None. Autrement dit, du point de vue de Python, écrire return None est équivalent
oublier l’instruction return. On peut également écrire return (sans le None) cela est aussi équivalent
à return None.

53

5 De nouveaux programmes interminables
On peut noter que, même sans utiliser de boucle while, les fonctions introduisent une nouvelle façon de se
retrouver avec des programmes qui ne terminent pas. En voici un exemple caricatural :

Programme de ping pong :

Définition des fonctions
def ping():

Affiche "ping" et appelle pong()
print("ping")
b = pong()
return b

def pong():
Affiche "pong" et appelle ping()
print("pong")
b = ping()
return b

Appel
ping()

La fonction ping (qui ne reçoit aucun argument en entrée) affiche “ping” puis appelle la fonction pong.
Celle-ci affiche “pong” puis appelle la fonction ping, et ainsi de suite. Notez qu’à aucun moment dans
l’exécution, les instructions return ne sont atteintes : l’étape de sortie de la fonction n’a jamais lieu. En
principe, l’exécution de ping() devrait donc durer éternellement, exactement comme une boucle while
infinie. Mais en réalité, Python possède un garde-fou contre ce type d’appels infinis, et il finit par afficher
l’erreur suivante :

RecursionError: maximum recursion depth exceeded while calling a Python object

Nous reviendrons sur cette erreur au Chapitre 6.

54

Exercices du Chapitre 4
Dans ces exercices, les arguments des fonctions seront choisis à l’intérieur du script : on n’utilisera pas, sauf mention
contraire, la fonction input de Python.

1. Créez une fonction perroquet qui prend en argument une
chaîne de caractères, et renvoie la même chaîne de carac-
tère deux fois (en séparant par un espace). Exécutez la
définition de votre fonction, puis appelez perroquet sur
la chaîne de caractères de votre choix dans la console :

>>> perroquet("Vive Thonny !")
"Vive Thonny ! Vive Thonny !"

Dans les questions suivantes, enregistrez les définitions de
fonctions et les appels à ces fonctions dans le même script
(mais n’hésitez pas à utiliser aussi la console pour tester
vos fonctions).

2* Créez une fonction nombre_chiffres qui renvoie le nombre
de chiffres d’un entier donné. Appelez cette fonction sur
999 et 1000.

3. En reprenant vos programmes des exercices du Chapitre
2, créez un fonction ecriture_base(N,b) qui prend en
argument en entier N et une base b comprise entre 2 et
10, et qui renvoie une chaîne de caractères représentant
l’entier N en base b. En utilisant cette fonction, affichez
l’écriture en base 5, 6 et 7 de tous les nombres de 0 à 100.

4. Proposez une spécification de la fonction remplie par cha-
cun des algorithmes suivants (Indice : ne pas hésiter à
exécuter les algorithmes sur plusieurs exemples. Faire
une table de vérité pour le premier algorithme).

def mystere1(b1,b2):
b1,b2 sont des booléens

if b1:
return True

return b2
def mystere2(n):

n est un <int>
s = 0
while s**2 < n:

s+=1
return s**2==n

5* Créez une fonction super_chiffre(N) qui calcule la somme
des chiffres de N (en base 10), puis la somme des chiffres
du résultat, etc., jusqu’à ce que le résultat ne contienne
plus qu’un chiffre. (Indice : votre fonction pourra appeler
la fonction somme_des_chiffres du cours – que vous de-
vrez donc recopier dans le même fichier). Créer des fonc-
tions divisible_par_3 et divisible_par_9 qui vérifient
si un nombre est divisible par 3 ou 9, respectivement (ces
deux fonctions pourront appeler super_chiffre).

6* Créez une fonction isPrime qui prend en argument un
entier naturel et renvoie True s’il est premier, et False
sinon (on ne cherchera pas à utiliser le crible d’Eratos-
thène).

7. En vous aidant de la fonction précédente, créez une fonc-
tion countPrimes qui prend en argument un entier natu-
rel N et renvoie le nombre de nombres premiers entre 1
et N .

8* Créez une fonction permutationCirculaire1 qui prend
en argument un tableau T et ne renvoie rien, mais modifie
le tableau de manière à décaler tous ses éléments d’une
case vers la gauche, en mettant le premier élément en
dernière position. Par exemple

>>> T = [1,2,3,4,5]
>>> permutationCirculaire1(T)
>>> T
[2,3,4,5,1]

9. Créez une fonction permutationCirculaire qui prend
en arguments un tableau T et un entier n, et ne renvoie
rien mais modifie le tableau de manière à décaler tous ses
éléments de n cases vers la gauche (en considérant que la
dernière case est à gauche de la première). Par exemple

>>> T = [1,2,3,4,5]
>>> permutationCirculaire(T,2)
>>> T
[3,4,5,1,2]

10. Dans le jeu de Nim, on place N bâtonnets entre deux
joueurs, et ceux-ci retirent chacun leur tour entre 1 et 3
bâtonnets. Le joueur qui retire le dernier bâtonnet perd
la partie. Le but est de créer un programme capable de
joueur à ce jeu.

(a) Créez une fonction afficherNim(N) qui prend en argu-
ment un nombre de bâtonnets et affiche dans la console
la configuration de la partie. (Utiliser par exemple le
caractère “|” pour représenter chaque bâtonnet).

>>> afficherNim(10)
||||||||||

(b) Créez une fonction playerInput() qui ne prend aucun
argument. Cette fonction invite le joueur à entrer un
nombre entre 1 et 3, puis retourne la valeur choisie. Pour
cette question seulement, on utilisera la fonction input
de Python.

55

(c) Écrire une fonction computerChoice(M) qui prend en ar-
gument le nombre M de bâtonnets restants et renvoie un
nombre entre 1 et 3 (mais plus petit que M) correspon-
dant au choix de l’ordinateur. Pour l’instant, choisir ce
nombre au hasard.

(d) Écrire une fonction play(N) qui affiche l’état initial avec
N bâtonnets, puis fait jouer successivement le joueur et
l’ordinateur jusqu’à ce que la partie prenne fin. On don-
nera au joueur le choix de jouer le premier ou de laisser
l’ordinateur commencer. Cette fonction utilisera des ap-
pels aux fonctions des questions (a), (b) et (c).

(e) On dit qu’une position est perdante si l’adversaire peut
s’assurer la victoire, quelque soit le coup que l’on joue.
Par exemple, la position avec 1 bâtonnet restants est
évidemment perdante, mais aussi la position avec 5 bâ-
tonnets restants. On note P (n) la proposition
P (n) : “La position avec 4n+ 1 bâtonnets restants est

perdante”
Montrer que P (n) est vraie pour tout entier n ∈ N.

(f) Changer la fonction computerChoice(N) pour que l’or-
dinateur choisisse toujours, si c’est possible, de placer
le joueur dans une position perdante, et joue au hasard
sinon.

Mini-projet : casser un chiffrement

11. Le chiffrement de Vigenère permet de coder un message
à l’aide d’un mot clé : à partir du message clair, on ap-
plique à chaque lettre un décalage alphabétique corres-
pondant à une lettre du mot-clé. La lettre A de la clé
signifie qu’il faut décaler de 0, la lettre B, de 1, etc. Par
exemple, si la clé est musique, la suite des décalages est
12,20,18,8,16,20,4. Le message codé est obtenu en appli-
quant ces décalages lettre à lettre dans l’ordre, en répétant
la clé si elle est plus courte que le message. Par exemple :

j'adore ecouter la radio toute la journee
m usiqu emusiqu em usiqu emusi qu emusiqu
^ ^^^^^ ^^^^^^^ ^^ ^^^^^ ^^^^^ ^^ ^^^^^^^
V'UVWHY IOIMBUL PM LSLYI XAOLM BU NAOJVUY.

Le but de cet exercice est de “casser” le message se trou-
vant à la fin de la feuille d’exercice, qui a été crypté par
cette méthode. Pour mener cet exercice à bien, chaque
fonction devra être soigneusement testée avant de conti-
nuer. Détecter les erreurs au plus tôt les rend bien plus
faciles à localiser.

(a) Créez une fonction letter2num(c) qui prend en argu-
ment une lettre c et qui renvoie la position alphabétique
de cette lettre, avec la convention de commencer à 0 :

>>> letter2num("a")
0
>>> letter2num("z")
25

On supposera que c est une lettre minuscule sans accent
ni cédille. On pourra utiliser les fonctions char et ord
de Python :

>>> ord("a")
97
>>> char(98)
'b'
>>> ord("c")
99

(b) Créez une fonction normalize(c), qui prend en argu-
ment un caractère c, et le renvoie inchangé, sauf si c’est
l’un des caractères diacritiques suivants,

à â ä é è ê ë ï î ô ö ù û ü ç
À Â Ä É È Ê Ë Î Ï Ô Ö Ù Û Ü Ç

auquel cas, elle renvoie le caractère normal correspon-
dant. Par exemple,

>>> normalize('ç')
'c'
>>> normalize('Ü')
'U'
>>> normalize('a')
'a'

(c) Créez une fonction shift_char(c,l,signe) qui prend
en argument un caractère c (qui peut être diacritique),
une lettre minuscule normale l, et un signe ±1, et décale
le caractère c du nombre de places correspondant au ca-
ractère l, dans le sens positif si signe = 1, et négatif si
signe = -1. Par exemple

>>> shift_char("e","a",+1)
'e'
>>> shift_char("È","c",-1)
'C'
>>> shif_char(" ","f",1)
" "

On utilisera la fonction isalpha() de Python, qui per-
met de détecter si un caractère est une lettre alphabé-
tique, et la fonction isupper(), qui dit si une lettre est
majuscule ou minuscule :

c1 = 'a'
c2 = ' ' #Espace
c3 = '\n' #Retour à la ligne
c4 = 'È'
print(c1.isalpha()) # -> True
print(c1.isupper()) # -> False
print(c2.isalpha()) # -> False
print(c3.isalpha()) # -> False
print(c4.isupper()) # -> True

56

(d) Créez une fonction

vigenere(message,key,signe),

qui applique le code de Vigenère à message avec la clé
key. La clé est supposée ne contenir que des lettres mi-
nuscules non diacritiques. Si la valeur de signe est −1,
on appliquera un décalage négatif au lieu d’un décalage
positif. Testez votre fonction avec l’exemple donné en
début d’exercice puis codez un texte de votre choix.

Nous allons voir comment casser ce chiffrement lorsque
la clé utilisée est assez courte (pas plus de 15 lettres),
en exploitant la fréquence de la lettre “e” dans la langue
française. L’idée est de sélectionner pour chaque N , une
clé de taille N selon le critère suivant :

Parmi toutes les clés possibles de taille N , en choisir
une qui produit le plus de “e” dans le message décodé.

Pour chaqueN = 1, 2, ..., 15, on détermine une clé de taille
N vérifiant cette condition, puis on décode le message avec
cette clé. Si cela a fonctionné, l’un des 15 textes obtenus
sera alors lisible !

(e*) Créez une fonction nb_occurrences(s,c) qui compte le
nombre d’occurrences du caractère c dans la chaîne de
caractères s.

(f*) Créez une fonction lettre_plus_frequente(s) qui ren-
voie la lettre la plus fréquente dans la chaîne de carac-
tères s (en choisissant arbitrairement en cas d’égalité).

(g*) Écrire une fonction nieme_lettres(message,M,i) qui
retient une lettre sur M de message en commençant à
la position i. Il faut ignorer les caractères spéciaux (es-
paces, virgules, etc.). Par exemple

>>> nieme_lettres("Petit exemple",3,0)
'Pixp'

(h) Créez une fonction guess_key(message,N) qui renvoie
une clé de taille N choisie selon le critère ci-dessus. (In-
dice : pour chaque i entre 0 et N − 1, créer la chaîne
de caractère qui contient une lettre sur N du message à
partir de la lettre en position i).

(i) Vous pouvez décoder le Texte 1 de l’appendice avec cette
méthode.

57

Chapitre 5

Validité et complexité des algorithmes

“Attention aux bugs dans le code ci-dessus ; j’ai seulement démontré qu’il est correct, je ne l’ai pas testé.”
Donald Knuth dans une lettre à Peter van Emde Boas (1977)

Nous avons vu dans le chapitre précédent que certaines fonctions pouvaient être calculées à l’aide d’algo-
rithmes. Nous avons constaté, sur l’exemple de l’algorithme d’Euclide, qu’il n’est pas toujours évident qu’un
algorithme calcule effectivement la fonction pour laquelle il est prévu. Même si l’algorithme renvoie le bon
résultat sur de nombreux exemples, il se peut qu’il soit incorrect mais que nous n’ayons pas encore trouvé
les entrées sur lesquelles il se trompe. Dans la première partie de ce chapitre, nous allons voir une méthode
pour démontrer mathématiquement la validité d’un algorithme.

D’autre part, nous allons voir qu’il est possible de créer plusieurs algorithmes différents pour réaliser une
même fonction, et il est important de pouvoir comparer ces algorithmes. Pour ce faire, la deuxième partie
du chapitre aborde la notion de “complexité” d’un algorithme, c’est-à-dire, la quantité d’opérations qu’il
nécessite pour arriver au résultat.

1 Terminaison et correction d’un algorithme

Définition 5.1 : Validité d’un algorithme

Etant donné une fonction, on dit qu’un algorithme destiné à calculer cette fonction est valide si
(i) Il termine : quelque soit l’entrée, il finit par renvoyer un résultat, correct ou non (autrement

dit, pas de boucles infinies).
(ii) Il est correct, c’est-à-dire que le résultat qu’il renvoie est effectivement la fonction attendue de

l’entrée.

Pour se convaincre qu’un algorithme est valide, la démarche la plus intuitive est de tester l’algorithme
sur de nombreuses entrées différentes, et vérifier que les sorties correspondent au résultat attendu. Cette
démarche est fort utile, elle est appliquée de manière systématique quant on crée des algorithmes. Elle permet
souvent de découvrir les bugs, qui sont des erreurs involontaires, ou des cas de figure imprévus par la personne
qui a inventé l’algorithme. En revanche, cette démarche ne peut que rarement garantir le fonctionnement de
l’algorithme dans tous les cas. 1

1“Program testing can be used to show the presence of bugs, but never to show their absence !” Edsger W. Djikstra. (“Tester
un programme peut être utilisé pour montrer la présence de bugs, mais jamais pour en montrer l’absence !”)

58

Pour s’assurer que l’algorithme fonctionne dans tous les cas, on peut essayer de fournir une démons-
tration mathématique. Celle-ci contient alors deux étapes :

1. Terminaison : on montre que l’algorithme termine (il ne se retrouve jamais piégé dans une boucle
infinie) sur n’importe quelle entrée autorisée par la spécification.

2. Correction : on montre que dans tous ces cas, l’algorithme renvoie le résultat attendu, conformément
à la spécification.

Validité de l’algorithme d’Euclide
Illustrons cela dans le cas de l’algorithme d’Euclide, dont on rappelle le programme en Python ci-dessous :

def Euclide(a,b):
Renvoie le PGCD de a et b
r = a % b
while r > 0:

a = b
b = r
r = a % b

return b

Nous avons vu que ce programme a l’air de marcher pour a = 28 et b = 36 (et le fait qu’il porte le nom
d’Euclide nous porte à croire qu’il est correct). Mais avouons-le, il n’est pas évident à première vue que
ce programme termine quelque soit les entiers a et b donnés en argument ! Comment est-on sûr que la
condition r > 0 finisse par être fausse ? Pourquoi renvoyer b, et pas a, ou r ? Quel rapport avec le PGCD?
La démonstration ci-dessous est là pour répondre à ces questions.

Démonstration de la validité de l’algorithme d’Euclide.

1. Terminaison. La seule possibilité pour que le programme ne termine pas, c’est que l’algorithme reste
coincé dans la boucle while : notre tâche consiste à montrer que cela ne peut jamais arriver. Notons
a1, a2, a3, ... la suite des valeurs prises par la variable a pendant l’algorithme. Faisons de même pour b et r.
D’après ces définitions et le programme, nous avons les relations suivantes : pour tout n ≥ 1,

an+1 = bn , bn+1 = rn. (5.1)

Notons qn le quotient de la division euclidienne de an par bn, de sorte que pour tout n ≥ 1,

an = bnqn + rn,

avec 0 ≤ rn ≤ bn − 1. En particulier, comme bn+1 = rn d’après (5.1),

∀n ≥ 1 , bn+1 ≤ bn − 1 ,

et
∀n ≥ 2 , bn = rn−1 ≥ 0.

La suite b2, b3, . . . est ainsi une suite strictement décroissante d’entiers positifs ou nuls : elle est donc
finie. Ceci n’est possible que si l’algorithme termine.

2. Correction. Notons N le nombre de valeurs prises par la variable b. Remarquons d’une part que rN = 0
(car rN ≥ 0 par définition d’un reste dans une division euclidienne, et si rN > 0, nous aurions fait encore
une itération, donc N ne serait pas la dernière valeur prise par bN). On en déduit que aN = bNqN , donc aN
est divisible par bN (ce que l’on note bN |aN : “bN divise aN”) et ainsi

bN = PGCD(aN , bN).

59

D’autre part, bN est le résultat renvoyé par l’algorithme. Par conséquent, pour montrer la correction, nous
devons montrer que cette valeur est bien le PGCD de a et b, autrement dit, que

PGCD(aN , bN) = PGCD(a1, b1). (5.2)

La clé de la preuve est la remarque suivante : pour tout n ∈ {1, . . . , N},

PGCD(an, bn) = PGCD(bn, rn). (5.3)

En effet, tout diviseur commun de an et bn est un diviseur commun de bn et rn, puisque

d|an et d|bn =⇒ d| (an − bnqn)︸ ︷︷ ︸
=rn

.

(Pourquoi ?) Réciproquement, tout diviseur commun de bn et rn est un diviseur commun de an et bn, puisque

d|bn et d|rn =⇒ d| (rn + bnqn)︸ ︷︷ ︸
=an

.

Ainsi, les diviseurs communs de an et bn sont exactement les mêmes que ceux de bn et rn. Le plus grand
diviseur commun des uns est donc égal au plus grand diviseur commun des autres, ce qui établit l’égalité
(5.3) ci-dessus.

La remarque précédente permet de démontrer un invariant du programme, c’est-à-dire, une proposition
P (n) qui est à chaque fois vraie à l’itération n. Spécifiquement, nous allons montrer que la proposition

P (n) : “PGCD(an, bn) = PGCD(a1, b1)”

reste vraie pour tout n ∈ {1, . . . , N}. En effet, puisque an+1 = bn et bn+1 = rn, la propriété (5.3) peut
s’écrire

∀n ∈ {1, . . . , N − 1} , PGCD(an, bn) = PGCD(an+1, bn+1).

Ainsi, il est clair que si P (n) est vraie, alors P (n + 1) est automatiquement vraie aussi. Puisque P (1) est
(évidemment) vraie, on en déduit donc que P (2) est vraie, puis P (3) à son tour, et ainsi de suite. P (N) est
donc vraie. Or P (N) n’est autre que l’égalité (5.2) ci-dessus. Nous avons donc obtenu ce que nous cherchions
à montrer.

Méthode générale
Voici les aspects généraux de la méthode précédente qu’il faut retenir et appliquer dans les exercices.

1. Introduire les suites de valeurs prises par chaque variable au cours des itérations, et énoncer les relations
qu’elles vérifient (cette partie consiste essentiellmenet à traduire le programme en langage mathéma-
tique)

2. Pour montrer la terminaison d’un programme, on cherche souvent à démontrer l’existence d’une suite
d’entiers naturels positifs ou nuls qui décroit strictement à chaque itération. Dans l’exemple d’Euclide,
c’était la suite (bn)n≥2. Comme une telle suite ne peut contenir qu’un nombre fini de termes, le nombre
d’itération doit être fini.

3. Pour montrer la correction d’un programme, on trouve les invariants de boucle. Un invariant est une
condition qui est préservée d’une itération à l’autre d’une boucle for ou while. Un bon invariant P (n)
est tel que
(a) P (1) est (évidemment) vrai au début du programme, pourvu que les entrées soient valides,
(b) si P (n) est vrai, alors P (n+ 1) aussi, tant que la boucle n’est pas terminée.
(c) Le fait que P (N) soit vrai (où N est le nombre d’itérations) implique que l’algorithme est correct.

60

Dans certains cas, l’invariant de boucle sera suggéré dans l’exercice et il faudra démontrer que c’est en
effet un invariant. Parfois, il faudra trouver l’invariant soi-même.

Si l’on ne voit pas quelle suite introduire pour la terminaison, ou quel invariant définir pour la correction,
on peut exécuter l’algorithme sur quelques exemples et repérer les motifs qui se répètent systématiquement
(par exemple : “tiens ce nombre est toujours pair”, ou “à chaque fois, a est plus petit que b”, etc.). Une fois
que le bon invariant est découvert, il ne reste plus qu’à utiliser le principe de récurrence (voir la Section 2
de l’Annexe A) pour conclure. L’étape (a) donne l’initialisation et (b) donne l’hérédité tant que n+ 1 ≤ N .
On en déduit par récurrence que P (N) est vrai et on conclut grâce à (c).

2 Compléxité algorithmique
Définition
Étant donné la spécification d’une fonction, il peut exister plusieurs façons de la mettre en œuvre par un
algorithme, et certains algorithmes peuvent être plus rapides que d’autres pour calculer la même fonction.
Par exemple, pour calculer la somme des entiers de 1 à N , on peut utiliser une approche “naïve” comme
ceci :

def S1(N):
Calcule la somme des N premiers entiers
S = 0
for i in range(N+1): # i = 0,...,N -> Rappel : N+1 est exclu

S+=i
return S

Mais on peut aussi “tricher” un peu en utilisant la formule 1 + 2 + . . . + N = N(N+1)
2 (voir Section 1.1 de

l’Annexe A), ce qui donne

def S2(N):
Calcule la somme des N premiers entiers
S = N*(N+1)//2
return S

La fonction remplie par ces deux algorithmes est la même, mais les algorithmes sont différents. Et cette
différence est de taille : comparez les temps d’exécution de ces deux fonctions pour N = 109...

La complexité algorithmique est une mesure de la performance d’un algorithme.

Définition 5.2 : Complexité algorithmique

La complexité d’un algorithme est la fonction C(N) qui décrit le nombre maximal d’opérations
élémentaires qui devront être effectuées par cet algorithme sur n’importe quelles données d’entrée de
“taille” N .

• Pour parler de la complexité de l’algorithme, il faut d’abord définir ce qu’on entend par la “taille” des
données. Ceci est définit individuellement pour chaque problème rencontré. Il peut s’agir par exemple
d’un entier N passé en argument, de la longueur d’un tableau ou d’une chaîne de caractères, ou encore
du nombre de bits nécessaire pour représenter les entrées en mémoire.

• Par opérations élémentaires, on entend les opérations arithmétiques (addition, soustraction, multipli-
cation et division) sur les nombres entiers ou flottants, les comparaisons et les assignations. Attention :

61

les opérations “natives” de Python (comme la concaténation des chaînes de caractères ou les opérations
sur les tableaux) ne sont pas toutes des opérations élémentaires, voir la Table 5.1

• Le nombre d’opérations élémentaires effectuées par un même algorithme dépend bien sûr des entrées.
Même sur différentes entrées de taille N , le temps d’exécution peut différer grandement d’une entrée à
l’autre. Par exemple, considérons l’algorithme suivant, qui détermine la présence de la lettre “e” dans
une chaîne de caractère s (la taille des données est ici donnée par la longueur N de s) :

def contient_la_lettre_e(s):
Renvoie Vrai si la chaîne s contient au moins un "e", et Faux sinon
N = len(s)
for i in range(N):

Pour i = 0,...,N-1
On teste si la i-ième lettre est un e
if s[i] == "e": # Ce test coûte une opération par itération

Si oui, ce n'est plus la peine de continuer, on peut renvoyer True
return True

Si le programme arrive à ce point, c'est que toutes les lettres de s
ont été parcourues et aucune n'était un "e" : on renvoie False
return False

Si s commence par “e”, alors l’algorithme n’effectuera qu’une seule comparaison, alors que si s ne
contient aucun “e”, l’algorithme fera N comparaisons. Par définition, la complexité de l’algorithme est
donc

C(N) = N

c’est-à-dire, on donne la complexité dans le pire des cas. 2

Instruction Arguments Nombre d’opérations élémentaires

len(s)/len(T) s une chaîne de caractères/T un tableau 1
s[i]/T[i] i un entier 1

s[i:j]/T[i:j] i,j deux entiers Nij la longueur du résultat
T[i] = a a n’importe quel objet 1
T.pop() T un tableau 1
s1+s2 s1,s2 deux chaînes de caractères N1 +N2 la somme des longueurs de a et b.
T*k T un tableau de longueur N , k un entier kN , la longueur du tableau créé.

[None]*k k un entier k, la longueur du tableau créé
(cas particulier important du précédent)

T.append(a) T un tableau, a n’importe quel objet N , la longueur du tableau T final

Tab. 5.1 – Coût en opérations élémentaires de certaines instructions.

2Il est aussi classique en informatique de considérer la complexité “dans le meilleur des cas”, ou “en moyenne”, sur toutes
les entrées de taille N possibles. Dans ce cours, nous ne considérerons que la complexité dans le pire des cas.

62

Fig. 5.1 – Source : xkcd.com

Comparaison de fonctions de N

Dans ce paragraphe, nous allons comparer des fonctions de N comme f(N) = N , g(N) = N2, ou encore
h(N) = N2 +2N +1, etc. Le but est de savoir quelle fonction augmente le plus vite en fonction de N . Pour
ce faire, nous introduisons la notation “grand O” (comme “Ordre de grandeur”)

Définition 5.3 : Notation “grand O”

Soient f et g deux fonctions à valeurs positives ou nulles d’une variable entière. On écrit

f(N) = O(g(N))

s’il existe un entier N0 et une constante K > 0 (indépendante de N) tels que

f(N) ≤ Kg(N) pour tout N ≥ N0.

La proposition “f(N) = O(g(N))” dit que f “n’augmente pas plus vite que g” (à la constante K près,
qui sera considérée comme non importante). Par exemple, 2N + 3N2 = O(N2) puisque pour tout N ≥ 2,

2N + 3N2 ≤ N2 + 3N2 ≤ 4N2

(on est donc dans le cadre de la définition avec N0 = 2 et K = 4).

Définition 5.4 : Notation “Θ”

On écrit
f(N) = Θ(g(N))

si f(N) = O(g(N)) et g(N) = O(f(N)).

Autrement dit, la proposition “f(N) = Θ(g(N))” dit que “f et g augmentent à la même vitesse” (toujours
à une constante près indépendante de N). On utilisera souvent les propriétés suivantes :
(i) Additivité. Si f(N) = O(h(N)) et g(N) = O(h(N)), alors f(N) + g(N) = O(h(N)).
(ii) Multiplicativité. Si f1(N) = O(g1(N)) et f2(N) = O(g2(N)), alors f1(N)f2(N) = O(g1(N)g2(N)).

63

xkcd.com

Les mêmes propriétés sont vraies en remplaçant le grand O par Θ. Par exemple,

N(N + 1)

2
= Θ(N2).

En effet, N + 1 = O(N) (pourquoi ?) donc N(N+1)
2 = O(N2) par multiplicativité. D’autre part, N2 ≤

N(N + 1) ≤ 2N(N+1)
2 donc N2 = O

(
N(N+1)

2

)
.

Classes de complexité
Lorsqu’on conçoit des algorithmes, on essaye en général de classer leur complexité dans une échelle qui va
de Θ(1) à Θ(2N) (voire pire : il n’y a pas de limite à la lenteur possible d’un algorithme), voir Table 5.2
ci-dessous.

constante logarithmique linéaire quasi-linéaire quadratique polynomiale exponentielle
Θ(1) Θ(log(N)) Θ(N) Θ(N logN) Θ(N2) Θ(Nm), m ≥ 3 Θ(2N)

(instantanné) (ultra-rapide) (rapide) (rapide) (plutôt lent) (lent) (catastrophique)

Tab. 5.2 – Classes de complexité. Les commentaires entre parenthèses sont donnés à titre indicatif.

En reprenant les fonctions S1 et S2 définies en début de section, l’exécution de S2 demande une multi-
plication et une division, soit au total deux opérations élémentaires, et ce, quelque soit N . On dit donc que
ce programme a une complexité constante, ou Θ(1) (ordre 1) 3. Pour S1, il faut faire N additions (une pour
chaque entier i), soit un total de N opérations élémentaires. On dit que ce programme a une complexité
linéaire, ou Θ(N). Voyons deux autres exemples :

Exemple 1 : La fonction suivante détermine combien de fois la lettre “e” apparaît dans une chaîne de
caractère :

def nombre_de_e(s):
Renvoie le nombre d'occurrences de la lettre "e" dans la chaîne s.
N = len(s)
occurrences = 0
for i in range(N):

if s[i] == "e":
occurrences+=1

return occurrences

Notons N la taille de la chaîne de caractère s en entrée. L’exécution de cette fonction nécessite N compa-
raisons (à chaque fois que l’on teste si s[i] == "e"), et au plus N additions (si la chaîne s ne contient que
la lettre "e"). Le nombre d’opérations est donc au plus 2N (et exactement 2N pour toutes les les entrées
de la forme "ee...ee"). La complexité vaut donc Θ(N), une complexité linéaire.

Exemple 2 : On considère le programme suivant, qui détermine si une chaîne de caractères contient un
doublon, c’est-à-dire, deux caractères identiques :

3Ce n’est pas tout à fait vrai, car la multiplication de N par N + 1 est de plus en plus chère lorsque N augmente. On
pourrait compter le nombre d’additions et multiplications en binaire, ce qui nous mènerait à une complexité de O(log2(N)2)
pour S2, car N et N + 1 se représentent à l’aide d’environ n = log2(N) bits et la multiplication binaire des nombres à n bits a
une complexité de O(n2). Par la suite, nous ignorerons cet aspect et ferons comme si toutes les opérations élémentaires sur les
nombres entiers coûtaient Θ(1). Les opérations sur les flottants coûtent réellement Θ(1).

64

def contient_doublon(s):
Détermine si s contient deux fois un même caractère
N = len(s)
for i in range(N):

for j in range(N):
if i!=j and s[i] == s[j]:

Doublon trouvé !
return True

Aucun doublon trouvé
return False

Soit N la taille de la chaîne de caractères s, déterminons la complexité C(N) de cet algorithme en fonction
de N . Dans le pire des cas (s’il n’y a aucun doublon), pour chaque i = 0, . . . , N − 1, le programme effectue
une boucle sur j qui contient N itérations, dont chacune effectue deux comparaisons (pour évaluer les deux
booléens dans la condition du if). Le nombre de comparaisons effectuées par l’algorithme est donc, dans le
pire des cas,

C(N) =

N−1∑
i=0

N−1∑
j=0

2

 =

N−1∑
i=0

(N × 2) = N × 2N = 2N2.

La complexité vérifie donc C(N) = Θ(N2), une complexité quadratique.
Il est possible de légèrement améliorer ce programme en faisant commencer la deuxième boucle for à

partir de i + 1 (en effet, dans la première version, chaque couple d’indices x < y est testé deux fois, une
première fois avec i = x et j = y, la deuxième fois avec i = y et j = x) :

def contient_doublon(s):
Détermine si s contient deux fois un même caractère
N = len(s)
for i in range(N):

for j in range(i+1,N):
if s[i] == s[j]:

Doublon trouvé !
return True

Aucun doublon trouvé
return False

Cette fois, le nombre de comparaisons pour une chaîne sans doublons, et donc dans le pire des cas, est

C(N) =

N−1∑
i=0

 N−1∑
j=i+1

1

 =

N−1∑
i=0

(N − 1− i) =

N−1∑
i′=0

i′ =
N(N − 1)

2
.

Ce programme fait donc à peu près 4 fois moins de comparaisons que le précédent, mais sa complexité est
toujours Θ(N2), car

N(N − 1)

2
=

N2 −N

2
=

1

2
N2

(
1− 1

N

)
︸ ︷︷ ︸

Θ(1)

= Θ(N2).

Complexité et P = NP
Créer des algorithmes de faible complexité est un enjeu important dans de nombreuses applications, par
exemple en industrie (un programme plus rapide coûte moins de temps de calcul donc offre des économies

65

qui peuvent devenir considérables), ou en cryptographie (la sécurité de la plupart des méthodes de cryptage
repose sur le fait que l’algorithme pour décoder le chiffrement demande un trop long temps de calcul).

Un problème célèbre est celui du “voyageur de commerce”, qui demande de trouver un itinéraire le plus
court possible pour un camion qui doit effectuer N livraisons dans N villes différentes. Pour trouver la
solution optimale, on peut calculer la longueur de chacun des itinéraires possibles et retenir le plus court
d’entre eux. Malheureusement, la complexité de cet algorithme est encore pire qu’exponentielle (puisqu’il y
a N × (N − 1) × . . . × 1 itinéraires possibles). Cela va fonctionner en pratique pour N entre 1 et 10, mais
déjà pour N = 20, il faudrait plusieurs millénaires pour obtenir la réponse sur un ordinateur actuel.

Il y a d’autres problèmes de programmation pour lesquels on commence par trouver une solution très
mauvaise comme celle-ci, mais il arrive qu’on se rende compte d’une astuce qui permet de réduire drastique-
ment la complexité (nous allons en voir un exemple pour le tri d’un tableau dans le Chapitre 6, ou le calcul
de la suite de Fibonacci). Il est donc assez légitime de se demander : pour le voyageurs de commerce, n’y
a-t-il pas une meilleure solution que d’énumérer tous les itinéraires ? Y a-t-il un moyen astucieux d’éviter
une grande partie de cette longue énumération et d’aboutir à la solution optimale avec un algorithme de
complexité polynomiale (c’est-à-dire, Θ(Nm) pour un certain m ?) Cette question n’est autre que la fameuse
conjecture P = NP , et quiconque trouvera la solution à ce problème se verra décerner un million de dollars
par l’institut mathématique Clay. 4

4Un peu plus précisément, la classe P (pour polynomial) est définie comme la classe des problèmes qui peuvent être résolus à
l’aide d’un algorithme de complexité au plus polynomiale (comme O(N), O(N2), O(N3) etc.) ; quant à la classe NP (pour non-
deterministic polynomial), elle contient les problèmes qui sont résolus en temps polynomial mais par des machines imaginaires
dites “non-déterministes” (des sortes d’ordinateurs capables à tout moment de se dédoubler en plusieurs copies, chaque copie
pouvant ensuite poursuivre le calcul de manière indépendante, jusqu’à ce que l’une des copies renvoie un résultat). La conjecture
P = NP demande simplement si ces deux classes deux problèmes sont en fait égales. La réponse est à ce jour inconnue...

66

Exercices du Chapitre 5

Classes de complexité
1* Démontrez les propositions suivantes :

(a) N(N + 1) +N3 = Θ(N3),
(b) N log(N) = O(N2),
(c) 1 + 2 + 3 + . . .+N = Θ(N2),
(d) Pour tout entier k, Nk = O(2N).

2* Pour tout entier N ∈ N, soit p(N) le plus petit entier tel
que N ≤ 2p(N). Démontrez que

p(N) = Θ(log(N))

3. Démontrez que pour tout k, l entiers naturels, Nk = Θ(N l)
si et seulement si k = l. Démontrez que les propositions
log(N) = Θ(Nk) et Nk = Θ(2N) sont fausses pour tout
entier k.

4. (Question bonus) Soit k ∈ N un entier. Dans cet exercice,
on se propose de montrer que 5

1k + . . .+Nk = Θ(Nk+1)

(a) Montrez que 1 + . . .+Nk ≤ Nk+1.
(b) Montrez que pour tout x ≥ 0,

(1 + x)k ≥ 1 + kx.

(Indice : procédez par récurrence).
(c) Déduisez de la question précédente que pour tout n ≥ 1

entier,

nk ≥ nk+1 − (n− 1)k+1

k + 1

(d) Montrez que 1 + . . .+Nk ≥ Nk+1

k+1

(e) Concluez en utilisant les questions précédentes.

Validité et complexité de quelques algo-
rithmes

5* Voici une fonction qui calcule la somme des éléments d’un
tableau :

def somme_elements(T):
s = 0
N = len(T)
for i in range(N):

s=s+T[i]
return s

5Pour k = 1, 2, 3, les formules 1 + . . .+N =
N(N+1)

2
, 12 + . . .+

N2 =
N(N+1)(2N+3)

6
, 13 + . . .+N3 =

N2(N+1)2

4
sont relativement

connues (vous pouvez les démontrer par récurrence). Plus généra-
lement, il existe des formules similaires pour tout entier k, qui font
intervenir les “nombres de Bernouilli”.

Démontrez la validité de cette fonction. On pourra intro-
duire la suite s0, s1, . . . des valeurs prises par s et consi-
dérer l’invariant de boucle suivant

P (n) : “sn = T [0] + . . .+ T [n− 1]”.

Déterminez la complexité de cette fonction.

6. Créez une fonction qui calcule le plus grand élément d’un
tableau et démontrez sa validité et sa complexité.

7. Reprenez la fonction insertion.py dans les exercices du
Chapitre 3 (dans la partie sur le tri). Quelle est sa com-
plexité en fonction de la taille du tableau U ?

8* Reprenez la fonction tri.py dans la même série d’exer-
cices. Justifiez que sa complexité est quadratique.

Recherche dichotomique

9* Dans cet exercice, on considère un tableau T d’entiers non
vide. Le but de l’exercice est de créer un algorithme qui
cherche si un élément a est dans le tableau, et si oui, ren-
voie sa position j telle que T [j] = a. Pour permettre une
recherche plus rapide, on commence par trier le tableau
par ordre croissant (ce qui “coûte cher” mais n’a besoin
d’être fait qu’une seule fois).

(a) Montrez que, après l’avoir trié, on peut supposer que la
longueur de T est une puissance de 2, quitte à répéter
son dernier élément autant de fois que nécessaire.

(b) Créez une fonction pretraitement(T) qui prend en ar-
gument un tableau T et renvoie un tableau U trié, de
taille N = 2p et contenant les mêmes éléments que T.

(c) Au départ, on sait seulement que si a est dans le tableau
U, il se trouve entre les indices 0 et N−1 (inclus). Cepen-
dant, en comparant a avec l’élément t qui se trouve au
milieu du tableau, on peut diviser par deux l’intervalle
de recherche (si a est plus petit que t, il faut chercher
entre 0 et N/2− 1, et sinon, entre N/2 et N − 1). Créez
une fonction find(a,U) effectuant au plus p itérations
en répétant ce principe. Le tableau d’entrée U sera sup-
posé déjà trié et de taille N = 2p (on n’appellera donc
pas pretraitement dans la fonction). On fera en sorte
que l’algorithme vérifie un invariant de boucle du type

P (k) : “Si a est dans le tableau U, il se trouve entre les
indices ik et ik + N

2k
− 1 (inclus)”

où i0, i1, . . . est la suite des valeurs prises par l’une des
variables.

(d) Indiquez la complexité de find en fonction de p. Com-
parez a la taille initiale du tableau T.

(e) Démontrez la validité de find.

67

Vérificateur d’anagrammes

10. Le but de cet exercice est d’écrire une fonction isAnagram
qui détermine si les chaînes de caractères s1 et s2 sont
des anagrammes l’une de l’autre. Par exemple

>>> s1 = "I am Lord Voldemort"
>>> s2 = "Tom Marvolo Riddle"
>>> isAnagram(s1,s2)
True

On propose l’algorithme suivant : on vérifie que s2 contient
la première lettre de s1 (sinon, ce ne sont pas des ana-
grammes, donc on stoppe l’algorithme), et on supprime
cette lettre de s1 et s2. Ensuite, on recommence avec
les s1 et s2 ainsi obtenues, jusqu’à ce que s1 n’ait plus
aucune lettre.

(a*) Créez une fonction findChar(s,c) qui prend en argu-
ment une chaîne de caracètre s et un caractère c, qui
renvoie None si c n’est pas dans s, et sinon, renvoie un
i tel que c = s[i]. Par exemple

>>> findChar("e","La disparition")
>>> findChar("n","Thonny")
3

Indiquez sa complexité en fonction de la longueur de s.
(b*) Créez une fonction delete(s,i) qui retire le caractère

en position i de s et renvoie la chaîne restante. Indi-
quez sa complexité en fonction de la longueur de s (On
pourra utiliser des slices et la concaténation de chaînes
de caractères avec +).

(c) Créez une fonction delWhiteSpace(s) qui retire tous
les espaces de la chaîne de caractère s et renvoie la
chaîne restante (pensez à réutiliser les fonctions précé-
dentes !). Indiquez sa complexité.

(d) Dans cette question, on pourra faire appel à la fonction
lower() de Python qui s’utilise comme ceci :

>>> M = "MesSaGe"
>>> m = M.lower()
>>> m
'message'

En utilisant les questions précédentes, créez la fonction
isAnagram.

(e) Démontrez que isAnagram a une complexité quadra-
tique en fonction de la longueur de s1.

(f) Dans cette question, on admet la validité des fonctions
findChar, delete, delWhiteSpace et lower. Démon-
trez la validité de isAnagram. On pourra considérer
l’invariant de boucle suivant

P (i) :“Il existe une chaîne ti de longueur i telle que
s01 ∼ si1 + ti , s02 ∼ si2 + ti,”

où si1, s
i
2 sont les valeurs successives prises par les va-

riables s1 et s2, et où, pour deux chaînes s et t, la
notation s ∼ t signifie que s et t sont des anagrammes,
et s+ t représente la concaténation de s et t.

68

Chapitre 6

Récursivité

Avant de lire ce chapitre, il est préférable de se familiariser quelques notions de base sur la
récursivité. Pour cela, le lecteur pourra se référer au Chapitre 6.

1 Introduction
Le mot récursif (du latin recursum, courir en arrière) fait référence à un principe apparemment paradoxal,
qui consiste à définir un objet à partir de l’objet lui-même. Afin de ne pas tomber dans une définition
circulaire, on doit définir des cas de base. De nombreux objets sont définis de manière récursive, par exemple
(i) xn est défini comme x× xn−1 (avec le cas de base x0 = 1).
(ii) La fonction factorielle est définie par n! = n× (n− 1)! (avec le cas de base 0! = 1).
(iii) L’ensemble des entiers naturels N peut être défini par la propriété récursive que si n ∈ N, alors

n+ 1 ∈ N (avec le cas de base 0 ∈ N). Selon cette définition, “5” n’est rien d’autre que le nom donné
à ((((0 + 1) + 1) + 1) + 1) + 1.

(iv) Le triangle de Sierpiński est une fractale, qu’on obtient par un processus récursif de subdivision :
chaque triangle est subdivisé en 4 triangles égaux, et parmi ces 4 triangles, celui qui est au centre est
retiré (avec comme cas de base un triangle équilatéral), voir Figure 6.1

(v) Une démonstration par récurrence est un procédé récursif : on établit qu’une suite de propositions est
vraie en montrant que chacune est une conséquence de la proposition précédente (avec le cas de base
que la première proposition est vraie).

Fig. 6.1 – Les 5 premières itérations pour la construction du triangle de Sierpiński (il faut poursuivre le
processus à l’infini pour obtenir la véritable fractale, qui est l’ensemble des points qui ne sont jamais retirés
par ce processus).

Malgré son apparence un peu contre-intuitive, nous allons voir dans ce chapitre que la récursivité est une
notion à la fois commode et puissante en programmation.

69

2 Fonctions récursives en Python
Le point fondamental qui permet la récursivité, c’est qu’une fonction peut s’appeler elle-même. Une telle
fonction est dite récursive (a l’inverse, une fonction qui n’est pas récursive est souvent qualifiée de fonction
itérative) :

Définition 6.1 : Fonction récursive

Une fonction est dite récursive si au moins l’une des instructions qu’elle contient est un appel à cette
fonction elle-même.

Voici la fonction récursive la plus simple :

def f():
f()

Elle ne prend aucun argument et consiste juste à s’appeler elle-même. Lorsqu’on l’exécute, rien ne se passe
pendant plusieurs secondes, puis l’erreur suivante est affichée dans la console :

>>> f()
...
File "python/f.py", line 2, in rec

f()
RecursionError: maximum recursion depth exceeded

Pour mieux comprendre ce qui se passe, modifions légèrement la fonction f : en plus de s’appeler elle-même,
on lui fait afficher quelque chose à chaque fois qu’elle est appelée :

def f():
print("f a été appelée !")
f()

Lorsqu’on exécute cette fonction, on voit s’afficher le message "f a été appelée !" de nombreuses fois,
avant que le message d’erreur n’apparaisse. En principe, l’exécution de cette fonction devrait se poursuivre
à l’infini, et l’erreur que nous recevons n’est due qu’à une limitation matérielle : la taille finie de la mémoire
de l’ordinateur. Un ordinateur disposant d’une quantité infinie de mémoire pourrait théoriquement exécuter
ce code sans erreur : il continuerait à afficher le message sans interruption.

La possibilité pour une fonction de s’appeler elle-même ouvre la voix à des définitions de fonctions très
élégantes, comme pour la fonction factorielle ci-dessous :

def factorielle(n):
if n==0:

return 1 # Cas de base
else:

return factorielle(n-1)*n # Appel récursif

Au début, cela peut paraître invraisemblable que cette fonction fonctionne. On a l’impression de “tricher”
en appelant la fonction qu’on est en train de créer. Pourtant, cette fonction marche parfaitement :

70

>>> factorielle(4)
24

Cela n’a rien d’un miracle, voyons pourquoi. D’abord, il est clair que

>>> factorielle(0)

sera évalué à 1, puisqu’aucun appel récursif ne sera rencontré jusqu’au return. Il en découle que

>>> factorielle(1)

sera également évalué à 1, puisque la valeur retournée est factorielle(0)*1 et que nous venons d’établir
que factorielle(0) est évaluée à 1. Ceci implique à son tour que factorielle(2) sera évalué comme 2*1,
soit 2, et ainsi de suite. Par récurrence, on voit donc que factorielle(n) sera évaluée à n×(n−1)× . . .×1.
La Figure 6.2 ci-dessous illustre l’évaluation de factorielle(4) :

Fig. 6.2 – Exécution de la fonction factorielle(4).

3 Complexité des fonctions récursives
Complexité de factorielle
La complexité d’une fonction récursive est souvent obtenue comme la solution d’une relation de récurrence.
Par exemple, si l’on note C(n) le nombre d’opérations effectuées par factorielle sur l’entrée n, nous avons

71

C(0) = 0 (aucune opération) et pour n ≥ 0,

C(n+ 1) = C(n) + 1

car l’exécution de factorielle(n + 1) nécessite l’exécution de factorielle(n), soit C(n) opérations, et
la multiplication par n, soit une autre opération. Ainsi, (C(n))n∈N est une suite arithmétique de pas 1, et
on obtient donc C(n) = n pour tout entier n. Cette fonction a donc la même complexité que la fonction
itérative correspondante :

def factorielle_iterative(n):
r = 1
for i in range(1,n+1):

r = r*i
return r

mais la version récursive est bien plus élégante ! 1

Suite de Fibonacci
La suite de Fibonacci est définie par récurrence par F0 = 1, F1 = 1, puis, pour n ≥ 2,

Fn = Fn−1 + Fn−2.

Autrement dit, à partir du deuxième terme, chaque terme est obtenu en faisant la somme des deux précédents
(les premiers termes sont donc 1, 1, 2, 3, 5, 8, 13, ...). On peut facilement créer une fonction récursive pour
calculer les termes de cette suite :

def Fibonacci(n):
if n==0:

return 1 # Cas de base
if n==1:

return 1 # Cas de base
if n>=2:

return Fibonacci(n-1) + Fibonacci(n-2) # Appels récursifs.

Mais cette fonction, aussi élégante soit elle, a un défaut fatal : elle est catastrophiquement inefficace. Essayez
par exemple (armez-vous de patience...)

>>> Fibonacci(35)
>>> Fibonacci(40)
>>> Fibonacci(45)

Cette ineffacité de Fibonacci est un véritable cas d’école d’une fonction récursive mal écrite. Il est fonda-
mental de comprendre ce qui explique sa lenteur, et de voir comment on peut y remédier.

Pour commencer, calculons sa complexité : on pose F (N) la quantité d’opérations nécessaires pour le
calcul de Fibonacci(N). On a alors F (0) = 1 (pour la comparaison n==0), F (1) = 2 (une comparaison
supplémentaire n==1) et pour tout n ≥ 2,

F (N) = F (N − 1) + F (N − 2) + 6

1En revanche, la limite sur le nombre d’appels récursifs fait que la version récursive de factorielle ne fonctionne que pour
environ n ≤ 1000 (ou environ n ≤ 3000 dans la console). Il est possible de modifier manuellement ces limites, mais Python
restera dans tous les cas un langage plutôt hostile à la récursion.

72

(le +6 étant dû aux trois comparaisons, les calculs de N-1 et N-2, et l’addition de Fibonacci(N-1) et
Fibonacci(N-2)). On a donc F (N) = Θ(φN) où φ := 1+

√
5

2 ≈ 1.618989... (pour démontrer cela, voir les
exercices à la fin du chapitre). La fonction Fibonacci est donc de complexité exponentielle ! On peut s’en
apercevoir en regardant le temps que met Python à exécuter Fibonacci(n) pour n = 30, . . . , 40 :

Valeur de n 30 31 32 33 34 35 36 37 38 39 40
Temps d’exécution (s) 0.4 0.6 1.0 1.7 2.8 4.6 7.4 12.2 19.4 32.3 51.5

Tab. 6.1 – Temps d’exécution de Fibonacci(n) pour n = 30, . . . , 40.

Il faut attendre presque une minute pour connaître le 40-ième terme de la suite. En comparaison, voici
une fonction itérative, peut-être moins élégante que la version récursive, mais elle, de complexité linéaire :

def Fibonacci_iterative(n):
if n == 0 or n == 1:

return 1
i = 2
A = 1
B = 1
C = A + B
while i < n:

A,B,C = Fibo(i-2),Fibo(i-1),Fibo(i)
i = i+1
A = B
B = C
C = A + B

return C

Le calcul de Fibonacci_iterative(1000) ne prend qu’une fraction de seconde... Alors, faut-il abandonner
à jamais la récursion ? Sûrement pas : on ne quitte pas un tel paradis à la première déconvenue !

Pour mieux comprendre la raison pour laquelle Fibonacci effectue autant de calculs, nous allons ajouter
un print en tête de la fonction pour afficher la valeur de n à chaque fois qu’elle est appelée :

def Fibonacci(n):
print("Fibonacci appelée avec n =",n)
if n==0 or n == 1:

return 1
return Fibonacci(n-1) + Fibonacci(n-2)

Voici l’affichage de Fibonacci(5) :

>>> Fibonacci(5)
Fibonacci appelée avec n = 5
Fibonacci appelée avec n = 4
Fibonacci appelée avec n = 3
Fibonacci appelée avec n = 2
Fibonacci appelée avec n = 1
Fibonacci appelée avec n = 0
Fibonacci appelée avec n = 1
Fibonacci appelée avec n = 2

73

Fibonacci appelée avec n = 1
Fibonacci appelée avec n = 0
Fibonacci appelée avec n = 3
Fibonacci appelée avec n = 2
Fibonacci appelée avec n = 1
Fibonacci appelée avec n = 0
Fibonacci appelée avec n = 1

On voit que contrairement à factorielle, l’ordre dans lequel Fibonacci procède est assez chaotique :
le calcul de Fibonacci(2) est effectué 3 fois, celui de Fibonacci(1) est effectué 5 fois, etc. Au lieu de
mémoriser ces résultats, ils sont recalculés de nombreuses fois : la complexité exponentielle Fibonacci
s’explique donc tout simplement par le fait qu’elle passe presque tout son temps à recalculer des caleurs
qu’elle a déjà obtenues.

Peut-on sauver Fibonacci ?
La section précédente illustre l’un des principaux dangers de la récursivité : écrire des programmes aussi
élégants qu’inefficaces. Néanmoins il existe des tecuniques qui permettent, dans la plupart des cas, de
“sauver” notre implémentation récursive. L’une d’elles est la mémoïsation, qui consiste à ajouter une mémoire
dans laquelle on stocke les valeurs déjà calculées, pour éviter de les recalculer plus tard. Voici comment mettre
en oeuvre cette idée pour la fonction Fibonacci :

def Fibonacci(n,mem):
if mem[n] == None:

Valeur par encore calculée, on calcule le résultat pour la première fois
if n == 0

r = 1 # Cas de base
if n == 1:

r = 1 # Cas de base
else:

r = Fibonacci(n-1,mem) + Fibonacci(n-2,mem) # Appel récursif
On mémorise le résultat
mem[n] = r

else:
Valeur déjà calculée, on récupère le résultat dans la mémoire
r = mem[n]

return r

N = 100
Création d'une mémoire de taille adaptée :
mem = [None]*(N+1)
Fn = Fibonacci(N,mem)

Cette fois, la complexité de Fibonacci est linéaire. En effet, après chaque appel récursif de Fibonacci, une
nouvelle case du tableau mem est remplie. Or, il n’y a que N cases dans mem, donc il la ligne contenant les
appels récursifs est exécutée au plus N fois. Ainsi, il y a au maximum 2N appels récursifs. Hormis ces appels
récursifs, les opérations effectuées par Fibonacci sont toutes élémentaires. Le nombre total d’opérations est
donc O(N).

74

4 Problèmes à structure récursive
Considérons le problème suivant : écrire une fonction sous_ensembles(k,n) qui renvoie un tableau conte-
nant tous les sous-ensembles de {1, . . . , n} contenant k éléments. Chaque sous-ensemble sera représenté par
un tableau trié contenant les éléments choisis. Par exemple :

>>> sous_ensembles(2,4)
[[1, 2], [1, 3], [2, 3], [1, 4], [2, 4], [3, 4]]
>>> sous_ensembles(4,5)
[[1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 4, 5], [1, 3, 4, 5], [2, 3, 4, 5]]

Ce problème a une structure récursive : en effet, on peut ramener la résolution du problème à la résolution
d’un problème “plus petit”.

Pour commencer, on remarque que les sous-ensembles de {1, . . . , n} à k éléments se divisent en deux
groupes : les sous-ensembles ne contenant pas n, et les sous-ensembles le contenant. Les premiers sont sont
les sous-ensembles de {1, . . . , n− 1} à k éléments, et les seconds sont ceux de la forme En−1 ∪ {n} où En−1

est un sous-ensemble de {1, . . . , n− 1} à k − 1 éléments. On peut donc écrire

def sous_ensembles(k,n):
Sous-ensembles ne contenant pas n
A = sous_ensembles(k,n-1)
Sous-ensembles contenant n :
B = sous_ensembles(k-1,n-1)
for i in range(len(B)):

B[i].append(n)
return A + B

(rappel : A + B renvoie la concaténation des tableaux A et B). Pour l’instant, ce programme ne fonctionne
pas ; mais il ne reste plus qu’à définir les cas de base, ici k = 0 et k > n :

def sous_ensembles(k,n):
if k == 0:

Un seul sous-ensemble : l'ensemble vide
ens_vide = []
return [ens_vide]

if k > n:
Aucun sous-ensemble
return []

Sous-ensembles ne contenant pas n
A = sous_ensembles(k,n-1)
Sous-ensembles contenant n :
B = sous_ensembles(k-1,n-1)
for i in range(len(B)):

B[i] = append(B[i],n)
return concat(A,B)

On a ainsi résolu un problème en deux étapes : (i) se ramener à des cas “plus petits”, et (ii) résoudre
explicitement des cas de base. Cette manière de fonctionner est très répandue en programmation.

75

5 Diviser pour régner
Non seulement la récursivité permet de résoudre élégamment des problèmes apparemment compliqués, mais
en plus, elle mène parfois à découvrir des algorithmes très rapides, à l’aide d’une stratégie simple : diviser
pour régner. L’idée est la suivante :
• (Diviser) : On découpe le problème en un ou plusieurs sous-problèmes de tailles à peu près égales,
• On résout chaque sous-problème en appliquant récursivement la même stratégie, (c’est-à-dire qu’ils
seront divisés à leur tour, et ainsi de suite, jusqu’à atteindre un cas de base)

• (Régner) : On combine les solutions des sous-problèmes pour obtenir la solution du problème initial.
Voyons quelques exemples.

L’exponentiation rapide
Pour calculer an, on peut remarquer que si n est pair, disons n = 2k, alors an = ak × ak. On a donc
découpé le problème en deux morceaux identiques : calculer ak. On combine les solutions simplement en les
multipliant. Si n est impair, disons n = 2k + 1, alors la même idée s’applique cette fois en combinant par
an = ak × ak × a. Le programme récursif suivant utilise cette idée :

def puissance(a,n):
Calcul rapide de a puissance n
if n == 0:

return 1
else:

1. Diviser !
k = n//2
2. On résout le sous-problème récursivement
ak = puissance(a,k)
3. Régner !
On recombine selon que n est pair ou impair:
if n % 2 == 0:

return ak*ak
else:

return ak*ak*a

Dans le cas où n est une puissance de 2, on peut voir facilement que la complexité C(n) de l’algorithme
vérifie C(n) = Θ(log2(n)). En effet, pour tout p ≥ 1,

C(2p) = 3 + C(2p−1)

(le 3 est dû aux opérations non récursives, et le C(2p−1), à l’appel de puissance(a,k)). Ceci se résout
explicitement par

C(2p) = 3p+ C(20) = Θ(p) = Θ(log2(2p))

On admet qu’en général, C(n) = O(log2(n)). En comparaison, la fonction itérative suivante

def puissance_iterative(a,n):
r = 1
for i in range(n):

r*=a
return r

76

est de complexité linéaire. Elle est donc beaucoup plus lente que la fonction précédente. Par exemple, pour
le calcul de 210

9 , seule la méthode récursive permet d’obtenir un résultat en un temps raisonnable

>>> a = puissance(2,10**9) # prend quelques secondes
>>> b = puissance_iterative(2,10**9) # nécessite plusieurs millieurs d'heures !

Recherche dichotomique dans un tableau trié
Supposons que T est un tableau trié dans l’ordre croissant, et que l’on souhaite déterminer si une portion du
tableau T [i], T [i+1], . . . , T [j] contient l’élément x, et si oui, dans quelle case. Dans le cas particulier où i = 0
et j = N − 1, cela revient à chercher x dans tout le tableau, mais il est nécessaire de résoudre le problème
un peu plus général pour tout 0 ≤ i ≤ j ≤ N afin d’être en mesure d’appliquer la technique de diviser pour
régner.

On a alors trois cas, en notant k = ⌊ i+j
2 ⌋ le milieu (ou presque) de la plage de cases

• Soit x > T [k], dans ce cas il suffit de chercher x parmi les cases T [k + 1], . . . , T [j]

• Soit x < T [k], dans ce cas il suffit de chercher x parmi les cases T [i], . . . , T [k − 1]

• Soit x = T [k], auquel cas on peut immédiatement terminer l’algorithme.
On en déduit l’algorithme suivant :

def chercher(x,T,i,j):
Cherche x parmi T[i], T[i+1],...,T[j-1],T[j]
Renvoie k si T[k] = x, ou None si x n'est pas dans le tableau
if j<i:

Cas de base
return None

else:
k = (i+j)//2
if x > T[k]:

return chercher(x,T,k+1,j)
elif x < T[k]:

return chercher(x,T,i,k-1)
else:

return k

(comparez la simpilcité de ce programme avec celui que vous avez obtenu dans les exercices du Chapitre 5...).
Si l’on note C(N) la complexité de cet algorithme pour chercher x dans tout le tableau, on vérifie comme
dans le paragraphe précédent que

C(2n) = Θ(n)

et en général, on admet que C(N) = Θ(log2 N), c’est-à-dire, une complexité logarithmique en fonction de la
taille du tableau.

77

TP 6

Quelques fonctions récursives de base

1. Etant donné un paramètre a, soit un = aa
a...a

où la
“tour” d’exposants contient n étages (u0 = 1, u1 = a,
u2 = aa, u3 = aa

a , etc.). Créez une fonction récursive
qui calcule le n-ième terme de cette suite. Calculer u500

pour différentes valeurs de a.

2. Créez une fonction récursive qui calcule

un =

√√√√
n+

√
(n− 1) +

√
. . .+

√
2 +
√
1 ,

puis une fonction récursive qui calcule

vn =

√
1 +

√
2 +

√
. . .+

√
n.

3* Les coefficients binomiaux
(
n
p

)
(“p parmi n”) pour p, n en-

tiers, sont définis comme le nombre de façons différentes
de choisir p éléments parmi une liste de n éléments. Ils
vérifient la relation de récurrence(

n

p

)
=

(
n− 1

p

)
+

(
n− 1

p− 1

)
avec les cas de base

(
n
0

)
= 1, et

(
n
p

)
= 0 lorsque p > n.

Créez une fonction récursive calculant
(
n
p

)
pour tout p, n

entiers. Cette fonction est-elle efficace ? Appliquez la
technique du cours pour l’améliorer. Calculez

(
400
200

)
.

Calcul rapide de la suite de Fibonacci
Dans ce problème, on se propose de créer un algorithme
rapide pour calculer le N -ième terme de la suite de Fibo-
nacci (Fn)n∈N. Nous prenons la même définition que dans
le chapitre : F0 = F1 = 1, puis Fn = Fn−1 + Fn−2 pour
n ≥ 2.

4. (Rappel) Créez une fonction itérative Fibo_iterative
qui réalise cette tâche. Quelle est sa complexité ?

5. Montrez que pour tout entier n ≥ 2,(
Fn+1

Fn

)
= A

(
Fn

Fn−1

)
où A est une matrice carrée de taille 2×2 que l’on précisera
(voir la section 3 de l’Annexe A).

6. En déduire que (
Fn+1

Fn

)
= An

(
1
1

)

où An est définie par récurrence par A0 =

(
1 0
0 1

)
et

An+1 = AAn.

7. Démontrez que pour tout k, ℓ ∈ N, AkAℓ = Ak+ℓ (indice :
procédez par récurrence sur k).

8. En Python, on peut représenter une matrice 2 × 2 par
un tableau de longueur 4. Les cases 0 et 1 contiennent la
première ligne, et les cases 2 et 3, la seconde. Par exemple,
selon cette convention, la matrice

A =

(
1 2
3 4

)
être représentée par le tableau [1,2,3,4]. Créez une
fonction produit22(A,B) qui reçoit deux tableaux A et
B représentant des matrices de taille 2 × 2, et renvoie le
tableau représentant la matrice AB.

9* Créez une fonction récursive puissance22(A,n) qui reçoit
un tableau représentant une matrice de taille 2× 2 et un
entier n, et renvoie le tableau représentant la matrice An.
On utilisera la stratégie diviser pour régner.

10. Calculez la complexité de puissance22 en fonction de n.
On se restreindra au cas où n est une puissance de 2.

11. Créez une fonction mat22vec(A,v) qui reçoit un tableau A
représentant une matrice de taille 2×2 et un tableau v de
longueur 2 représentant un vecteur v =

(
v1
v2

)
, et renvoie

le tableau représentant le vecteur Av.

12. Créez une fonction Fibonacci(n) qui calcule le n-ième
terme de la suite de Fibonacci. Commentez sa complexité.

13. Le texte numéro 2 de l’appendice est codé à l’aide du chif-
frement de Vigenère, avec une clé de longueur 100, formée
des 100 premiers chiffres du nombre Fibonacci(10000000)
en base 26. Décodez ce texte !

Tri par fusion
Dans ce problème, on se propose de mettre en œuvre un
exemple classique de la stratégie “diviser pour régner” : un
algorithme rapide pour trier un tableau. Le principe est
de trier récursivement chaque les deux moitiés du tableau,
puis de fusionner les deux moitiés triées.

1. Créez une fonction tableau_aleatoire(N1,N2) qui crée
un tableau de taille N1 avec des valeurs aléatoires choisies
uniformément entre 1 et N2.

78

2. Créez une fonction moities(T) qui renvoie deux tableaux
T1 et T2 contenant les ⌊N/2⌋ premières cases et les N −
⌊N/2⌋ dernières cases de T, respectivement.

3* Créez une fonction fusion(T1,T2) qui fusionne deux ta-
bleau triés en un tableau trié. Par exemple

>>> fusion([1,3,5],[2,4,6])
[1,2,3,4,5,6]

4. Quelle est la complexité de la fonction fusion en fonction
de la taille des deux tableaux ?

5* Créez une fonction récursive triFusion qui trie un ta-
bleau.

6. Testez votre fonction sur un tableau de taille 105 avec des
éléments aléatoires entre 1 et 106. Comparez le temps
d’exécution avec le tri par insertion du Chapitre 3.

7* On note C(N) le nombre d’opérations effectuées par l’al-
gorithme de tri par fusion pour trier un tableau de taille
N dans le pire des cas. Démontrez qu’il existe K > 0 tel
que pour tout n ∈ N,

C(2n+1) ≤ 2C(2n) +K2n+1

8* En raisonnant par récurrence, démontrez que pour tout
entier n,

C(2n) ≤ 2nC(1) +Kn2n.

Déduisez-en que C(N) = O(N logN) pour N égal à une
puissance de 2 (et on admet que le résultat est aussi vrai
pour N quelconque). Commentez.

Permutations
On appelle permutation d’ordre N un tableau de longueur
N contenant les entiers de 1 à N , chacun exactement une
fois. Par exemple, [3, 2, 5, 4, 1] est une permutation d’ordre
5. Le but de l’exercice est de créer une fonction qui liste
toutes les permutations d’ordre N . L’exercice est guidé,
mais vous pouvez essayer de ne pas utiliser les indices et
trouver vous-même la structure récursive du problème, en
vous inspirant de l’exemple du cours concernant les sous-
ensembles de taille k.

1. Etant donné un tableau σ de longueur n et un entier i, on
note σ∨i le tableau de longueur n+1 obtenu à partir de σ
en ajoutant 1 à tous les nombres supérieurs ou égaux à i,
puis en rajoutant une case en fin de tableau dans laquelle
on met la valeur i. Par exemple

[2, 5, 3, 1, 4] ∨ 3 = [2, 6, 4, 1, 5, 3].

Démontrez que si σ est une permutation d’ordre n, alors
pour tout entier i ≤ n + 1, σ ∨ i est une permutation
d’ordre n+ 1.

2. Réciproquement, montrez que toute permutation σ d’ordre
n + 1 s’écrit de manière unique sous la forme σ′ ∨ i avec
σ′ une permutation d’ordre n et i ∈ {1, . . . , n+ 1}.

3. Créez une fonction v(sigma,i) qui prend en argument un
tableau sigma et un entier i et renvoie le tableau sigma
∨ i (attention à ne pas muter le tableau sigma).

4. Créez une fonction récursive qui liste toutes les permuta-
tions d’ordre n. Affichez toutes les permutations d’ordre
n = 6.

Les tours de Hanoi
Les tours de Hanoi sont un jeu dans lequel on dispose de
trois piquets et de n disques percés de rayons repsectifs
1, 2, ..., n. Pour n = 5, la configuration initiale peut être
schématisée de la manière suivante :

=|= | |
==|== | |
===|=== | |

====|==== | |
=====|===== | |

Position initiale pour n = 5

Les disques sont empilés du plus gros au plus petit, de bas
en haut. Le but du jeu est d’arriver dans la position finale
suivante :

| | =|=
| | ==|==
| | ===|===
| | ====|====
| | =====|=====

Position finale pour n = 5

Pour ce faire, on peut à chaque coup, transférer le disque en
haut d’une des piles au-dessus d’une autre pile, à condition
de ne jamais poser un plus grand disque sur un plus petit
disque. Par exemple, depuis la position initiale on peut
déplacer le petit disque sur le deuxième piquet :

| | |
==|== | |
===|=== | |

====|==== | |
=====|===== =|= |

Coup valide

79

Mais ensuite, on ne peut pas déplacer le disque de rayon 2
sur le même piquet :

| | |
| | |

===|=== | |
====|==== ==|== |
=====|===== =|= |

Coup invalide

On fournit un code Python, téléchargeable sur l’url

https:
//martinaverseng.perso.math.cnrs.fr/Hanoi.py

pour jouer à ce jeu. Il permet de créer et afficher des tours
de Hanoi, et de déplacer les disques :

>>> H = Hanoi(5)
>>> H
--------------- Coup 0 : ---------------

=|= | |
==|== | |

===|=== | |
====|==== | |
=====|===== | |

>>> H.deplacer(1,2)
------------ Coup 1 : 1 -> 2 -----------

| | |
==|== | |
===|=== | |

====|==== | |
=====|===== =|= |

1. Téléchargez le fichier Hanoi.py et placez-le dans un nou-
veau dossier. Dans ce même dossier, créez un deuxième
fichier intitulé par exemple

resolutionHanoi.py

2. Dans le fichier resolutionHanoi.py, écrivez les commandes
suivantes :

from Hanoi import *
importe le contenu de Hanoi.py
Taper demo() pour un exemple d'utilisation.
n = 3
H = Hanoi(n)
print(H)

et exécutez le fichier. Dans la console, déplacez le disque
de rayon 1 sur le piquet 3 avec la méthode deplacer. Pour
plus d’informations sur l’utilisation de la classe Hanoi,
appelez demo() après avoir exécuté votre fichier.

3. Créez une fonction resoudreHanoi(n) qui résout le jeu
pour un n arbitraire, en utilisant exclusivement la mé-
thode deplacer(i,j) de la classe Hanoi. (Indice : Ce
problème a une structure récursive !)

4. Déterminez le nombre minimal de coups nécessaires pour
résoudre le problème avec n disques.

5. Déduisez de la question précédente la complexité de la
fonction resoudreHanoi en fonction de n.

Suites récurrentes d’ordre 2
On se propose d’étudier les suites récurrentes de la forme

un =


x si n = 0

y si n = 1

aun−1 + bun−2 + c. sinon.

On suppose que a ̸= 0, 1 − a − b ̸= 0 et a2 + 4b > 0 (le
cas général pourra être traité par les lecteurs souhaitant
approfondir l’exercice).

1. On commence par éliminer la constante c. Montrez qu’en
posant vn = un + K avec une constante K bien choisie,
vn vérifie

vn =


x+K si n = 0

y +K si n = 1

avn−1 + bvn−2 sinon.

2. Démontrez qu’il existe r1, r2 ∈ R deux nombres réels dis-
tincts vérifiant l’équation x2 = ax + b. On les choisit de
sorte que |r2| < |r1| (pourquoi cela est-il possible ?)

3. Démontrez qu’il existe α, β ∈ C tels que pour tout n ∈ N,

vn = αrn1 + βrn2 .

4. Démontrez que |un| = Θ(rn1) si α ̸= 0.
5. Démontrez que la fonction F (n) du cours (la complexité

de la version récursive de Fibonacci) vérifie

F (n) = Θ(φn)

où φ = 1+
√
5

2 .

Pavage en L
On considère un échiquier de 64 cases disposées en un
carré de 8×8. L’une des cases de l’échiquier est choisie au
hasard et coloriée en noir. Montrer que l’on peut paver
le reste de l’échiquier avec des tuiles en forme de “L”
(ce problème est illustré sur la page de couverture de ce
document).

80

https://martinaverseng.perso.math.cnrs.fr/Hanoi.py
https://martinaverseng.perso.math.cnrs.fr/Hanoi.py

Chapitre 7

Classes

Dans les chapitres précédents, vous avez manipulé différents types (ou “classes”, synonyme de “type” en
Python) : <int>, <flot> etc. Vous avez sûrement remarqué que certains objets étaient plus adaptés que
d’autres à certaines tâches. Pour la plupart des tâches que vous rencontrerez, le type parfaitement adapté
n’existe pas encore dans Python : c’est à vous de le créer. C’est ce que nous allons apprendre à faire dans
ce chapitre.

1 Définition d’une classe
Créons par exemple un type “<magique>”. Pour l’ajouter à Python, on exécute un fichier contenant le code
suivant :

class magique:
pass

Le mot-clé class signale la définition d’un type, un peu comme def signale la définition d’une fonction.
Pour l’instant, la définition de magique est vide. Rappel : l’instruction pass évite juste que Python renvoie
une erreur à cause d’un bloc vide.

Après avoir exécuté ce fichier, on peut désormais créer des objets (on dit aussi des “instances”) de notre
nouveau type <magique> : essayez ceci

>>> a = magique() # Création d'une "instance" de la classe <magique>.
>>> type(a) # Affichage du type de a
<class '__main__.magique'>
>>> isinstance(a,magique) # a est un <magique> :
True
>>> isinstance(a,int) # mais a n'est pas un <int> :
False

Nous ne nous soucierons pas du préfixe __main__ que Python a ajouté au nom de notre type. La commande

>>> isinstance(a,t)

s’évalue à True si l’objet a est de type t, et False sinon. Comme les autres objets, notre objet magique vit
dans la mémoire. Il prend très peu de place, car il ne contient presque aucune information. La seule chose
à savoir sur lui pour l’instant, c’est son type : “<magique>”.

81

2 Initialisation et affichage
Il est possible de personnaliser ce qui se passe au moment où un nouvel objet est créé. Pour cela, on crée
une fonction nommée __init__ (“initialisation”) que l’on place dans le bloc de définition de la classe. Par
exemple, nous pouvons afficher un message dans la console à chaque création d’un objet de type <magique>.

class magique:
def __init__(self):

Fonction pour personnaliser l'initialisation d'un objet
print("Abracadabra ! Vous avez créé un objet magique.")

Fin de la définition de la classe <magique>
a = magique() # Création d'une instance
b = magique() # Création d'une instance

'Abracadabra ! Vous avez créé un objet magique.'
'Abracadabra ! Vous avez créé un objet magique.'

Le mot-clé self (qui veut dire “soi”, comme dans “soi-même”) est une variable qui fait référence au nouvel
objet en cours d’initialisation. L’usage du mot self plutôt qu’un autre nom de variable est une coutume
mais n’a rien d’obligatoire. On peut afficher notre nouvel objet de type <magique> dans la console :

>>> a
<__main__.magique object at 0x7aa96248c910>

mais cela n’est pas très engageant... Remédions tout de suite à cela, en définissant la fonction __repr__ qui
permet de personnaliser l’affichage d’une instance :

class magique:
def __init__(self):

Fonction pour personnaliser l'initialisation d'une instance
print("Abracadabra ! Vous avez créé un objet magique.")

def __repr__(self):
Fonction pour personnaliser l'affichage
Retourne un <str> représentant notre objet
return "Objet magique..."

Fin de la définition de "<magique>"

>>> a = magique()
'Abracadabra ! Vous avez créé un objet magique.'
>>> a
Objet magique...

Maintenant que nous savons créer de nouveaux types, il est temps d’aborder ce qui les rendent utiles :
(i) Les attributs (les informations que contient une instance)
(ii) Les méthodes (qui définissent le “comportement” d’une instance dans le programme).

3 Attributs
Pour l’instant, à part afficher des messages dans la console, nos objets <magique> ne servent à rien. De
plus, ils ne contiennent aucune information spécifique : rien ne différencie un objet magique d’un autre. Or,

82

en général, en plus de donner un type à un objet, nous voulons aussi qu’il “contienne des informations”.
Par exemple, le type int contient une information, à savoir, l’entier qu’il représente. Pour ajouter des
informations à nos objets, on utilise des attributs.

Définition 7.1 : Attributs

Les attributs sont des variables liées à une instance d’une classe, et qui décrivent son état.

En général, les valeurs des attributs sont initialisées dans la fonction __init__. Essayez cet exemple :

class carte:
def __init__(self):

Attributs : rang et couleur
self.rang = "Dame"
self.couleur = "Coeur"

def __repr__(self):
Affichage qui dépend de la valeur des attributs
return "Carte :" + self.rang + " de " + self.couleur

>>> C = carte()
>>> C
Carte : Dame de Coeur

Dans le programme ci-dessus, nous avons défini un nouveau type <carte> avec deux attributs : rang (As,
2, 3, ..., Valet, Dame, Roi) et couleur (Pique, Coeur, Carreau ou Trèfle). Puis nous avons créé une instance
de notre classe. On peut se représenter mentalement notre instance comme ceci :

Pour accéder aux attributs d’un objet, on utilise la syntaxe objet.nom_attribut :

>>> C.rang
'Dame'
>>> C.couleur
'Coeur'

L’accès à la valeur d’un attribut est à rapprocher de l’accès à une case d’un tableau. C’est un peu comme
si, au lieu de désigner une case par un numéro (T[i]), on utilisait plutôt un mot (C.rang). Comme pour les
tableaux, on peut aussi modifier la valeur d’un attribut : essayez ceci

>>> C.rang = "Valet"
>>> C
Valet de Coeur

83

Nous venons de “muter” notre objet, en modifiant la valeur d’un de ses attributs. Les types que vous créerez
en Python seront toujours mutables par défaut (voir la Section 4 du Chapitre 3)

Pour initialiser les attributs de nos instances, on les passe généralement en arguments de la fonction
__init__ comme ceci :

class carte:
def __init__(self,rg,clr):

Attributs : rang et couleur
self.rang = rg
self.couleur = clr

>>> C1 = carte("Valet","Trèfle")
>>> C2 = carte("Dame","Pique")
>>> C1
Carte : Valet de Trèfle
>>> C2
Carte : Dame de Pique

Ainsi, quand on écrit carte(arg1,arg2), ceci a pour effet de créer un objet de type carte et d’appeler la
fonction __init__ avec les arguments self (la carte qui vient d’être créée), arg1 et arg2.

Prenons un autre exemple en créant un type point et un type segment.

class point:
def __init__(self,x,y):

self.x = x # abscisse
self.y = y # ordonnée

def __repr__(self):
Renvoie (x,y)
return "(" + str(self.x) + "," + str(self.y) + ")"

class segment:
def __init__(self,A,B):

Vérification que A et B sont de type point
self.A = A
self.B = B

def __repr__(self):
return "Segment : "+ str(self.A) + " <----> " + str(self.B)

M1 = point(0.0,0.0)
M2 = point(1.0,1.0)
S = segment(M1,M2)

>>> M1
(0.0,0.0)
>>> M2
(1.0,1.0)
>>> S
Segment : (0.0,0.0) <----> (1.0,1.0)

84

Fig. 7.1 – Une instance de <point> et de segment.

Dans cet exemple, les points ont deux attributs (des nombres représentant leurs coordonnées x et y, prévus
pour être de type <float>), et les segments ont deux attributs : les deux extrémités, notées A et B, prévus
pour être de type <point>. Ainsi, la valeur d’un attribut peut très bien avoir un type personnalisé. Pour
connaître la coordonnée x de l’extrémité A du segment, on peut simplement écrire

>>> S.A.x
0.0

Protection des attributs
Supposons que l’on définisse une classe représentant des cercles, avec deux attributs, un centre et un rayon :

class cercle:
def __init__(self,ctr,r):

self.centre = ctr
self.rayon = r

def __repr__(self):
return "Cercle de centre "+str(self.centre)+" et de rayon "+str(self.rayon)

Pour l’instant, malgré leurs noms, les attributs “centre” et “rayon” peuvent contenir n’importe quel type
de variable. Un petit malin pourrait créer un cercle comme celui-ci :

>>> C = cercle("Thonny",-1)
>>> C
Cercle de centre Thonny et de rayon -1

Il serait rassurant de pouvoir garantir que quand un cercle est créé, ou quand ses attributs sont modifiés, le
centre est toujours un <point>, et le rayon est toujours positif. Pour ce faire, on peut utiliser une méthode
spéciale, __setattr__ (“set attribute” : assigner attribut). À chaque fois que l’on assigne ou réassigne un
attribut de notre classe, c’est cette méthode qui sera appelée. C’est l’occasion de vérifier que les arguments
respectent les conditions que nous souhaitons, et de déclencher une erreur dans le cas contraire.

class cercle:
def __init__(self,ctr,r):

self.centre = ctr # Appelle __setattr__(self,"centre",ctr)
self.rayon = r # Appelle __setattr__(self,"rayon",r)

85

def __setattr__(self,name,value):
Vérification des conditions :
if name == "centre":

if not isinstance(value,point):
raise Exception("Le centre doit être un point.")

if name == "rayon":
if value < 0:

raise Exception("Le rayon doit être positif")
Si tout s'est bien passé, on peut alors faire l'assignation :
super().__setattr__(name,value)

La syntaxe “raise Exception(message)” nous permet de déclencher volontairement une erreur. Même si cela
peut paraître étonnant, il est très utile de déclencher soi-même des erreurs dans un programme : en effet, à
votre avis, mieux vaut-il que le programme s’exécute sans vous avertir que votre cercle a un rayon négatif,
ou préférez-vous être prévenu dès que cela arrive ?

La dernière ligne contenant la commande super() se charge d’effectuer l’assignation une fois que les tests
ont été faits. Inutile d’essayer de comprendre cette étrange syntaxe, cela nous emmènerait trop loin. Il faut
admettre que c’est comme ça que cela fonctionne.

>>> C = cercle("Thonny",1) # Mauvais centre : erreur !
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<string>", line 10, in __init__
File "<string>", line 18, in __setattr__

Exception: Le centre doit être un point.
>>> C = cercle(point(0,0),1) # Arguments OK, pas d'erreur.
>>> C.rayon = -1 # Mauvaise réassignation : erreur !
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<string>", line 21, in __setattr__

Exception: Le rayon doit être positif

4 Méthodes
Nous venons de voir que les attributs sont ce qui, au sein d’une même classe, permettent de différencier une
instance d’une autre. Dans ce paragraphe, nous abordons le deuxième aspect fondamental d’une classe : les
méthodes, qui sont les choses que toutes les instances de votre type “savent faire”.

Définition 7.2 : Méthode

Les méthodes sont des fonctions spécifiques de la classe qui peuvent être appliquées à n’importe quelle
instance.

Par exemple, créons une méthode pour la classe <segment>, qui calcule la longueur d’une instance :

class segment:
def __init__(self,A,B):

86

self.A = A
self.B = B

def longueur(self):
"""Renvoie la longueur du segment"""
On commence par accéder aux coordonnées des extrémités :
xA = (self.A).x # Attribut 'x' du point (self.A)
yA = (self.A).y # Les parenthèses sont superflues.
xB = (self.B).x
yB = (self.B).y
l2 = (xB - xA)**2 + (yB - yA)**2
return l2**0.5 # Racine carrée.

Et voilà ! Maintenant, tous les objets de type <segment> “savent” calculer leur propre longueur :

>>> M1 = point(0,0)
>>> M2 = point(1,1)
>>> S = segment(M1,M2)
>>> S.longueur() # On demande à S de nous dire sa longueur
1.4142135623730951

Cette syntaxe vous rappelle peut-être quelque chose : c’est la même que pour ajouter ou retirer des cases
à un tableau, T.append(a) et T.pop(). En effet, les tableaux (ou <list>) sont eux-même un type, ou une
classe, et append et pop sont des méthodes de cette classe.

Plus généralement, les méthodes obéissent à la syntaxe suivante :

class ma_classe:
def __init__(self):

pass
def __repr__(self):

pass
def ma_methode(self,arg1,...argN):

Définition de la méthode comme une fonction
avec self premier argument obligatoire
...
return r1,r2,...,rM

A = ma_classe()
arg1 = ...
arg2 = ...
...
argN = ...
La méthode est appelée comme ceci :
r1,r2,...,rM = A.ma_methode(arg1,...,argN)
Seuls les arguments autres que self sont mis entre parenthèse

Les méthodes ont toujours un premier argument obligatoire, que l’on appelle généralement self, suivi
d’arguments optionnels. Le nom self sert à rappeler que cette méthode va s’appliquer à l’instance sur
laquelle on appelle la méthode. Pour appeler la méthode, on utilise la syntaxe

<instance>.<nom_de_la_methode>(arg1,...,arN)

87

C’est l’instance “elle-même” (“itself” en anglais) qui prend le rôle de l’argument “self” lors de l’exécution
de la méthode.

À part cela, une méthode est exactement comme une fonction normale. Elle peut renvoyer un résultat, ou
ne rien renvoyer mais afficher quelque chose, ou modifier un objet mutable (souvent, l’instance elle-même).
Par exemple, voici une méthode de la classe <point> qui applique une translation :

class point:
def __init__(self,x,y):

...
def __repr__(self):

...
def translater(self,dx,dy):

self.x = self.x + dx
self.y = self.y + dy
return None

>>> M = point(1.0,2.0)
>>> M
(1.0,2.0)
>>> M.translater(1.5,0.2)
>>> M
(2.5,2.2)

Maintenant que cette méthode est définie, il est très facile de créer une méthode pour translater un segment :
il suffit de translater ses extrémités :

class segment:
def __init__(self,A,B):

self.A = A
self.B = B

def __repr__(self):
...

def longueur(self):
...

def translater(self,dx,dy):
(self.A).translater(dx,dy)
(self.B).translater(dx,dy)
return None

M1 = point(0,1)
M2 = point(2,3)
S = segment(M1,M2)
print("Avant translation :",S)
S.translater(0.5,0.7)
print(S)
print("Après translation :",S)

>>>
Avant translation : Segment (0,1) <----> (2,3)

88

Après translation : Segment (0.5,1.7) <----> (2.5,3.7)

Remarque : Attention, après la translation, les variables M1 et M2 ont aussi changé de valeur (pourquoi ?).
Quand on définit une classe, on peut représenter la liste de ses attributs et de ses méthodes, pour visualiser

à quoi elle sert, voir la Figure 7.2 pour la classe segment.

Fig. 7.2 – Représentation de la classe segment.

Méthodes “magiques”
D’après ce que nous venons de voir, la syntaxe pour appeler une méthode est

>>> objet.methode(arg1,...,argN)

Imaginons que nous avons créé une nouvelle classe et que nous définissons une opération addition. On ai-
merait pouvoir écrire A + B au lieu de A.addition(B), non ? Eh bien c’est possible ! En Python, l’utilisation
de méthodes avec une syntaxe d’appel spéciale s’appellent les méthodes “magiques”. Prenons un exemple :
nous allons définir une classe Cappuccino dont les attributs sont la quantité de lait et de café :

class cappuccino:
def __init__(self,cafe,lait):

self.cafe = cafe # quantité de café
self.lait = lait # quantité de lait

def __repr__(self):
volume = self.cafe + self.lait
p_cafe = self.cafe/volume*100
p_lait = self.lait/volume*100
s = "Cappuccino\n"
s += " Café : " + str(p_cafe) + "%\n"
s += " Lait : " + str(p_lait) + "%"
return s

>>> C = cappuccino(400,100)
>>> C

89

Cappuccino
Café : 80%
Lait : 20%

Nous allons utiliser une méthode magique pour mélanger deux cappuccini :

class cappuccino:
def __init__(self,cafe,lait):

...
def __repr__(self):

...
def __add__(self,other):

cafe_total = self.cafe + other.cafe
lait_total = self.lait + other.lait
return cappuccino(cafe_total,lait_total)

Notre méthode __add__ peut être appelée comme n’importe quelle méthode normale :

>>> A = cappuccino(400,100)
>>> B = cappuccino(200,200)
>>> C = A.__add__(B)
>>> C
Cappuccino

Café : 66.66666666666666%
Lait = 33.33333333333333%

Mais le fait d’avoir choisi spécifiquement le nom __add__ nous permet d’utiliser aussi la syntaxe

>>> C = A + B # équivalent à C = A.__add__(B)
>>> C
Cappuccino

Café : 66.66666666666666%
Lait = 33.33333333333333%

Outre l’addition, il existe plusieurs autres méthodes magiques disponibles : en voici quelques-unes.

90

Opérateur Nom magique Syntaxe de l’appel
+ __add__(x,y) x + y
- __sub__(x,y) x - y
- __neg__(x) -x
* __mul__(x,y) x * y
/ __truediv__(x,y) x / y
// __floordiv__(x,y) x // y
% __mod__(x,y) x % y
> __gt__(x,y) x > y
>= __ge__(x,y) x >= y
< __lt__(x,y) x < y
<= __le__(x,y) x <= y
== __eq__(x,y) x == y
!= __ne__(x,y) x != y
() __call__(f,x) f(x)
[] __getitem__(A,i) A[i]
in __contains__(E,x) x in E

Tab. 7.1 – Quelques méthodes magiques et leurs syntaxe. D’autres exemples peuvent être trouvés dans la
documentation officielle de Python.

91

Exercices du Chapitre 7

Manipulations de base
1. Créez un type <vip> et créez une fonction soiree(x) qui

reçoit un argument x et renvoie une erreur si l’argument
n’est pas de type <vip>. (Utiliser isinstance et raise).

2. En reprenant les classes point et segment du cours, créez
un objet de type point et un objet de type segment et
affichez leurs attributs dans la console.

3. Ajoutez une classe triangle avec des fonctions __init__
et __repr__ appropriées (sans chercher à tracer le tri-
angle). Créez un objet de type triangle et affichez-le dans
la console

4. Ajoutez les trois méthodes suivantes à la classe triangle :
(a) perimetre(self) qui renvoie le périmètre du triangle,
(b) diametre(self) qui renvoie le plus grand côté du

triangle,
(c) centre(self) qui renvoie un <point> représentant

le centre de gravité du triangle.
Appelez ces trois méthodes.

Paquet de cartes

5. Reprenez la classe carte du cours et créez une classe paquet
qui représente un paquet de cartes. Dans la méthode
__init__, on prendra en argument un tableau d’objets de
type carte, qu’on assignera à un attribut cartes. Créez
une méthode taille(self) qui renvoie la taille du paquet.

6. Créez un paquet de carte contenant les 4 As.

7. Créez une fonction __repr__ qui affiche le nombre de cartes
du paquet et les liste dans l’ordre. On pourra utiliser le ca-
ractère \n pour le retour à la ligne. Appelez cette méthode
sur le paquet précédent.

8. Créez une fonction toutes_les_cartes qui ne prend au-
cun argument et renvoie un tableau de taille 52 contenant
toutes les cartes à jouer. On pourra définir des tableaux
rangs et couleurs comme suit

rangs=["As","2",...,"Valet","Dame","Roi"]
couleurs=["Pique","Coeur","Carreau","Trèfle"]

puis ajouter carte(rangs[i],couleurs[j]) pour chaque
0 ≤ i < 13 et 0 ≤ j < 4.

9* Créez une méthode sous_paquet(self,i,j) qui renvoie
le paquet composé des cartes en position i, i+1, ..., j, avec
1 ≤ i ≤ j ≤ N , où N est la taille du paquet.

10. Créez une méthodes couper qui mute le paquet en le “cou-
pant” à un endroit aléatoire. On utilisera le module random
pour décider où le paquet est coupé. On se servira de la
méthode sous_paquet.

11. Créez une méthode melange_americain qui mélange le tas
de cartes de la manière suivante : on coupe le paquet en
deux moitiés, et on crée le nouveau paquet en alternant les
cartes de l’une ou l’autre moitié, à chaque fois en tirant au
sort. Lorsqu’un paquet est épuisé, on ajoute alors toutes
les cartes restantes de l’autre paquet (faire un schéma !)

12. Appelez la méthode melange_americain plusieurs fois sur
un paquet de 52 cartes. Au bout de combien de mélanges
le paquet vous semble-t-il “bien mélangé” ? Quelle serait
selon vous une définition d’un “bon mélange” ?

Classe <fraction> et calcul numérique
1. Créez une classe fraction qui contient les attributs p pour

le numérateur, et q pour le dénominateur (deux entiers,
avec q ̸= 0). Créer des fonctions __init__ et __repr__
appropriées.

2. À l’aide de l’algorithme d’Euclide, créer une méthode
reduire(self) qui remplace un objet de type fraction par
son équivalent irréductible. Testez cette fonction y com-
pris sur des fractions négatives. Ajoutez un appel à cette
méthode dans la méthode __init__.

3. Créez une méthode taille(self) qui renvoie la “taille” de
la fraction, définie comme la somme du nombre de chiffres
du numérateur et du dénominateur.

4. Créez une méthode expansion_decimale(self,N) qui ren-
voie deux tableaux T_int et T_frac, où T_int contient
les chiffres de la partie entière de la fraction, et T_frac
contient les N premiers chiffres de l’expansion décimale
tronquée sans arrondir. (Indice : multiplier par 10N)

5. Créez une méthode print_decimales(self,N) qui affiche
l’expansion décimale tronquée à N décimales. Affichez
l’expansion décimale de 22/7 avec 20 chiffres après la vir-
gule.

6. Créez des méthodes magiques pour les opérations entre
fractions (addition, soustraction, multiplication, division,
puissance entière), ainsi que pour la valeur absolue (__abs__,
appelée avec abs(x)).

7. Créez une méthode magique pour l’égalité (symbole ==) de
deux fractions (utilisez __eq__). Créez de même des fonc-
tions __lt__ (lesser than), __gt__ (greater than), __le__
(lesser or equal) et __ge__ (greater or equal), pour les opé-
rateurs <, >, <= et >=, respectivement.

92

8. (Optionnel, mais pratique pour la suite) En mettant une
condition sur le type de l’argument other dans vos fonc-
tions précédentes, étendez les opérations arithmétiques entre
<fraction> et <int>. Par exemple, les variables a et b ci-
dessous

>>> a = fraction(1,2) + 1
>>> b = 3*fraction(1,2)

doivent être des <fraction> représentant 3
2 . Quand la

fraction se trouve à droite de l’opérateur, comme dans le
cas de b, il faudra utiliser la version __r<operateur>__ de
chaque opérateur. Par exemple, __radd__ pour l’addition
d’une fraction à droite.

9. Soit S ∈ Q avec S > 1. On note (xn)n∈N la suite définie
par

x0 = S, xn+1 =
1

2

(
xn +

S

xn

)
(c’est la méthode de Héron d’Alexandrie pour l’approxi-
mation de

√
S). Montrer que pour tout n ∈ N, xn ∈ Q et√

S ≤ xn ≤ S. En déduire que (xn)n∈N est décroissante,
puis que limn→∞ xn =

√
S.

10. Soit ε > 0. Montrer qu’il existeN ∈ N tel que |x2
N−S| < ε.

Montrer que pour cette valeur de N ,

|xN −
√
S| < ε.

11. Créez une méthode approx_sqrt(self,eps) qui, pour un
objet représentant un rationnel S > 1, et un rationnel
eps représentant une petite quantité ε > 0, renvoie deux
objets r1 et r2 de type fraction, avec |r1 − r2| ≤ ε et
r1 ≤

√
S ≤ r2. Calculez la 20000-ème décimale de

√
2.

12. L’approche précédente possède un défaut pratique majeur
pour le calcul numérique. Pour l’illustrer, on considère la
suite (rn)n∈N la suite définie par r0 = 2 et rn+1 =

√
rn + 2.

Calculez des encadrements par des fractions à 10−1 près de
r0, r1, . . . , r6 à l’aide de la méthode précédente et affichez
la taille des fractions correspondantes. Selon vous, quel est
le problème ?

13. Imaginez et mettez au point une solution qui permette de
calculer une approximation de rN en O(N) opérations avec
une précision arbitraire.

93

Chapitre 8

Listes et arbres

Prochainement disponible !

94

Annexe A

Rappels mathématiques

1 Suites et séries particulières
1.1 Somme des entiers entre 1 et n

La somme des entiers de 1 à n vaut

1 + 2 + . . .+ n =
n(n+ 1)

2
.

En effet, si l’on note S = 1 + 2 + . . .+ n cette somme, en écrivant

1 + 2 + 3 + . . . + n
+ n + (n− 1) + (n− 2) + . . . + 1

= (n+ 1) + (n+ 1) + (n+ 1) + . . . + (n+ 1)

on s’aperçoit que

2S = (n+ 1) + (n+ 1) + . . .+ (n+ 1)︸ ︷︷ ︸
n fois

= n(n+ 1) =⇒ S =
n(n+ 1)

2
.

1.2 Série géométrique
Nous avons besoin à plusieurs reprises de calculer des sommes du type

1 + 2 + 4 + 8 + 16 + . . . ou 1 +
1

2
+

1

4
+

1

8
+

1

16
+ . . .

(chaque terme est ici obtenu en doublant ou en prenant la moitié du précédent). Plus généralement, si a ∈ R
est un nombre réel et n ∈ N un entier, on explique ici comment calculer la somme

1 + a+ a2 + . . .+ an ,

où ak :=

k termes︷ ︸︸ ︷
a× a× . . .× a. Chaque nouveau terme est obtenu en multipliant par a le précédent : c’est ce qu’on

appelle une progression géométrique (les deux cas précédents sont des cas particuliers pour a = 2 et a = 1
2).

Il y a quelque cas évidents, comme a = 0 (dans ce cas, la somme vaut 1) et a = 1 (la somme est alors n).
Dans les cas où a ̸= 1, il existe une méthode astucieuse pour trouver la valeur de S = 1 + a+ . . .+ an. On
remarque en effet que

a× S = a× (1 + a+ . . .+ an) = a+ a2 + . . .+ an+1

95

puisque a× ak = ak+1. En comparant a× S et S, on s’aperçoit que la différence est maigre : il manque le 1
et il y a un an+1 en trop. Autrement dit, en posant la soustraction comme ceci,

S 1 + a + a2 + . . . + an

− a× S a + a2 + . . . + an + an+1

1 + 0 + 0 + . . . + 0 − an+1

on constate que S − aS = 1− an+1. En factorisant le membre de gauche par S et en divisant par (1− a) de
part et d’autre cela donne S = 1−an+1

1−a . Ceci établit donc la formule

1 + a+ . . .+ an =
1− an+1

1− a
pour tout n ∈ N et a ̸= 1. (A.1)

(notez que la division par 1− a dans la dernière étape n’est permise que si a ̸= 1). Dans le cas où a = 2, on
trouve donc par exemple, pour n = 9,

1 + 2 + 4 + . . .+ 29 =
1− 210

1− 2
= 210 − 1 = 1023

Lorsque a ∈]− 1, 1[, la quantité an tend vers 0 lorsque n tend vers l’infini, et donc d’après (A.1),

lim
n→∞

(1 + a+ . . .+ an) =
1

1− a
.

Par exemple, pour a = 1
2 , on a

lim
n→∞

(1 +
1

2
+ . . .+

1

2n
) =

1

1− 1
2

= 2.

Cette formule peut se retenir facilement en repensant au paradoxe de Zénon : si vous devez parcourir une
distance de 2 mètres, vous devez d’abord en parcourir la moitié (1 mètre) puis la moitié de ce qu’il reste
(12 mètres) et ainsi de suite (si bien, d’après Zénon, que vous n’atteindrez jamais votre destination, même si
vous vous en approcherez aussi près que vous voulez).

2 Principe de récurrence
2.1 Démonstration par récurrence
Imaginez que vous êtes un espion, et que vous pénétrez dans le quartier général ennemi. Celui-ci est organisé
en plusieurs compartiments, du moins sécurisé au plus sécurisé. Les plans de l’arme dévastatrice que vos
ennemis viennent de mettre au point se trouvent dans la chambre forte, qui est le dernier compartiment, le
plus sécurisé de tous. Votre but est de les dérober.

Vous ne savez pas combien de compartiments il y a au total : tout ce que vous savez, c’est que vous avez
réussi à entrer. Vous vous trouvez actuellement dans le premier, le moins sécurisé. De plus, vous disposez
d’une clé secrète confectionnée par votre technicien qui permet d’ouvrir n’importe quel compartiment à
condition d’avoir atteint le compartiment précédent. Vous vous dirigez vers le deuxième compartiment, et...
clic ! ça s’ouvre, votre clé fonctionne !

Le principe de récurrence vous dit ici que vous pourrez bien atteindre la chambre forte, et au passage,
n’importe quel compartiment. En effet, (i) vous êtes entrés et (ii) vous disposez d’un moyen pour passer de
n’importe quel compartiment au suivant.

Le même principe est utilisé en mathématiques pour démontrer une suite de propositions P (0), P (1), P (2),
Au lieu de démontrer chacune d’entre elles individuellement, on peut les prouver toutes à la fois à l’aide des
deux ingrédients suivants. On démontre

96

(i) Initialisation : que la première proposition, P (0), est vraie (vous savez entrer dans le premier compar-
timent du quartier général ennemi)

(ii) Hérédité : que si l’une des propositions est vraie, alors la suivante aussi (votre clé secrète fonctionne).

Le premier exemple ci-dessous est volontairement simple, au risque de sembler un peu évident. Le but est
d’isoler la difficulté sur le raisonnement par récurrence en lui-même, sans ajouter de difficulté mathématique
supplémentaire.

Exemple : Montrez que n < 2n pour tout entier n ∈ N.

Réponse : Pour chaque entier n ∈ N, appelons P (n) la proposition : “ n < 2n ”.
(i) La proposition P (0) (0 < 20) est bien sûr vraie ce qui établit l’initialisation (nous sommes entrés dans

le quartier général ennemi !)
(ii) Si l’une des propositions P (k) est vraie, alors la suivante, P (k + 1), l’est aussi. En effet, si k < 2k,

alors en ajoutant 1 de part et d’autre, et en utilisant le fait que 1 ≤ 2k, 1 on obtient

k + 1 < 2k + 1 ≤ 2k + 2k = 2× 2k = 2k+1.

Ainsi, k+1 < 2k+1, ce qui veut dire exactement que P (k+1) est vraie. Nous venons donc de montrer
que si P (k) est vraie, alors P (k + 1) aussi, ce qui établit l’hérédité (notre clé secrète fonctionne !)

D’après le principe de récurrence, nous pouvons conclure que toutes les propositions P (0), P (1), P (2), . . . sont
vraies. Autrement dit, n < 2n pour tout entier n ∈ N.

Exemple : Vous organisez un tournoi dans votre club de ping-pong, dans lequel tous les membres jouent
un match contre tous les autres. Montrez qu’il est possible d’établir un classement ayant la propriété que
chaque joueur a gagné contre le joueur juste en-dessous de lui dans le classement.

Réponse : Appelons P (n) la proposition “Un tel classement existe pour n participants”. Nous allons montrer
que toutes les propositions P (2), P (3), P (4) . . . sont vraies en utilisant le principe de récurrence.

(i) Initialisation : La proposition P (2) est bien sûr vraie, car il n’y aura qu’un seul match. Il suffit
d’inscrire le nom du gagnant en haut du classement, et celui du perdant, en bas.

(ii) Hérédité : Si l’une des proposition P (k) est vraie, alors la suivante, P (k + 1), l’est aussi. En effet,
supposons que notre tournoi ait k + 1 participants. Nous choisissons l’un d’eux, que nous appellerons
X, et que nous mettons temporairement de côté. Si P (k) est vraie, c’est que nous pouvons classer les
k participants restants comme demandé ; pour en déduire que P (k + 1) est vraie, il reste à démontrer
que l’on peut insérer X dans le classement ainsi obtenu. Pour ce faire, il suffit d’écrire le nom de X
juste au-dessus de la personne la mieux classée qu’il a battue, ou tout en bas s’il n’a remporté aucun
match. Par exemple, si X a perdu contre les 1er, 2ème et 3ème du classement, mais gagné contre
le quatrième, on l’insère entre les 3ème et 4ème noms. Le classement ainsi obtenu vérifie bien les
conditions demandées.

D’après le principe de récurrence, P (n) est vraie quelque soit l’entier n ; autrement dit, un tel classement
existe quelque soit le nombre de participants du tournoi.

2.2 Définition récursive
Il arrive souvent que l’on définisse une suite d’objet “petit à petit”, c’est-à-dire, les objets suivants sont définis
à partir des précédents. Voici un exemple typique : pour définir n! (lire “n factorielle”), on pose 0! = 1

1C’est vrai pour k = 0 car 20 = 1, et c’est évident pour k ≥ 1 en écrivant 2k = 2× 2× ...× 2︸ ︷︷ ︸
k fois

. Mais si vous voulez vous

exercer, vous pouvez aussi le démontrer... par récurrence !

97

(aussi étonnant que cela puisse sembler à première vue), puis, pour tout entier n ∈ N, (n+1)! = (n+1)×n!.
Autrement dit, on ne définit pas n! directement mais en deux étapes : un cas de base, et un principe pour
définir un objet à partir du précédent. Evidemment, on retrouve ici le principe de récurrence. 2

Un autre exemple célèbre est celui de la suite de Fibonacci. Cette suite F0, F1, F2, . . . est définie par
récurrence, avec les cas de base F0 = F1 = 1, et pour tout entier n ≥ 2,

Fn = Fn−1 + Fn−2.

Autrement dit, cette suite se construit progressivement en obtenant chaque nouveau terme comme la somme
des deux précédents.

3 Matrices
Une matrice A de taille m×n est un “rectangle de nombres” avec m lignes et n colonnes. Par exemple, voici
quelques matrices à coefficients entiers :

A =

(
1 2
3 4

)
, B =

(
3 1 4
1 5 9

)
, C =


1 4 9 16
25 36 49 64
81 100 121 144
169 196 225 256

 .

Une matrice qui n’a qu’une seule colonne est appelée un vecteur. Pour une matrice A, on note souvent ai,j
le coefficient qui se trouve sur la i-ième ligne et la j-ième colonne :

A =

a1,1 a1,2 . . . a1,n
...

...
an,1 an,2 . . . am,n

 .

Il existe des opérations très utiles entre matrices. La première, la plus simple, est l’addition. Si A et
B sont deux matrices de tailles identiques (même nombre de lignes et de colonnes), on peut les additionner.
Par définition, leur somme A+B est tout simplement la matrice de même taille, obtenue en ajoutant terme
à terme les coefficients de chacune. Par exemple(

1 2
3 4

)
+

(
5 6
7 8

)
=

(
6 8
10 12

)
.

Autrement dit, le coefficients ci,j de la matrice C = A+B est donné par ai,j + bi,j .
La deuxième opération importante est le produit matriciel. Cette fois, la définition n’a vraiment rien

d’intuitif 3. Si A est de taille m × n et B est de taille n × p, alors le produit, noté C = AB, est la matrice
de taille m× p dont les coefficients sont donnés par

ci,j = ai,1b1,j + ai,2b2,j + . . .+ ai,nbn,j . (A.2)

Voici comment on peut procéder pour calculer le produit de deux matrices A et B : on crée un rectangle de
taille m × p pour accueillir la matrice AB, et on place A à gauche de ce rectangle et B au-dessus, comme
ceci

2Dans ce cas précis, on a aussi vite fait d’écrire

n! = n× (n− 1)× . . .× 2× 1 ,

mais la définition récursive permet de définir des objets bien plus compliqués qui n’auraient pas pu être aussi facilement exprimés.
3Rien n’empêcherait de considérer le produit terme à terme des coefficients de deux matrices, ce qui, avouons-le, serait

beaucoup plus simple ! Mais il se trouve que ce n’est pas cette opération qui joue un rôle central dans les applications des
matrices, et ce n’est pas celle que tout le monde appelle le “produit matriciel”.

98

Pour chaque ligne de A et chaque colonne de B, on obtient un coefficient de AB : celui qui se trouve
à l’intersection. Sa valeur s’obient en multipliant la ligne et la colonne terme à termes et en sommant le
résultat, comme le dit l’équation (A.2). Par exemple,1 2

3 4
5 6

(
1 2 3 4
5 6 7 8

)
=

1× 1 + 2× 5 1× 2 + 2× 6 1× 3 + 2× 7 1× 4 + 2× 8
3× 1 + 4× 5 3× 2 + 4× 6 3× 3 + 4× 7 3× 4 + 4× 8
5× 1 + 6× 5 5× 2 + 6× 6 5× 3 + 6× 7 5× 4 + 6× 8


=

11 14 17 20
23 30 37 44
35 46 57 68


Si A et B sont des matrices carrées (de taille n×n), on peut faire le produit AB ou BA, mais on ne tombe

en général pas sur le même résultat : on dit que le produit matriciel n’est pas commutatif. Par exemple(
1 2
3 4

)(
5 6
7 8

)
=

(
19 22
43 50

)
et

(
5 6
7 8

)(
1 2
3 4

)
=

(
23 34
31 46

)
En revanche, le produit matriciel est associatif, c’est-à-dire que si A, B et C sont trois matrices de tailles
m × n, n × p et p × q, alors (AB)C = A(BC) (on peut calculer d’abord AB puis multiplier à droite par
C, ou bien d’abord BC, puis multiplier à gauche par A). En effet, en notant Mi,j le coefficient (i, j) d’une
matrice M , on a

[(AB)C]i,j = (AB)i,1C1,j + . . .+ (AB)i,pCp,j

= (Ai,1B1,1 + . . .+Ai,nBn,1)C1,j + . . .+ (Ai,1B1,p + . . .+Ai,nBn,p)Cp,j

= Ai,1 (B1,1C1,j + . . .+B1,pCp,j) + . . .+Ai,n (Bn,1C1,j + . . . Bn,pCp,j)

= Ai,1(BC)1,j + . . .+Ai,n(BC)n,j

= [A(BC)]i,j .

99

Annexe B

Textes codés

Les textes peuvent également être téléchargés au format .txt sur https://martinaverseng.perso.math.
cnrs.fr/texte_n.txt (en remplaçant “n” par 1 ou 2, pour le premier et le deuxième texte, respectivement.
On pourra utiliser les fonctions suivante pour récupérer le contenu d’un fichier texte dans une variable Python
et inversement :

def readText(filepath):
filepath : chemin du fichier contenant le texte codé
f = open(filepath, 'r')
s = f.read()
f.close()
return s # chaîne de caractère égale au contenu du fichier

def writeText(s,filepath):
s : variable contenant le texte décodé.
filepath : nom du fichier à enregistrer
f = open(filepath, "w")
f.write(s)
f.close()
return

1 Texte 1
(Pour le décodage de ce texte, voir les exercices du chapitre 4)

1. As vqy ss x’uqxhmfmdb

Vq tgcbawt rq oscgupigsd xe fiqexxcz, “Xih amolxbqe ttihqri-sxxih dqzwtf ?”. Az htjdmmi qayqtboqv eod
piuwzuv ase figaqe “qpqturt” sf “bicgqq.” Ptg pqjxbufmdbe pikfmuich qfvt qtamhwqe ht amzmtfq m vttx-
qxtf mgwhw nuic egq tdgeufas x’gwpuq osjfmzx ss oqw bcfe, qpwe oiihq mxiwfght sef hpbsqvtieq. Wx zqe
wxuzujxqmfmdbe pih aafw “bootmcs” qf “ttbeqi” scuhich qfvt ifupxgqqw ss xm qpbuqvt razx tzxqw as eari
vmnmiiqxptaqzx, xz qex swrrmrwxq h’tqtmtesd m pp qazgaieusc egq pt gqzw ss xm ujsefmdb “Xqw bootmcse
bijjqzx-tzxqw eszeig ?” sf xe gsbarhs m oiihq cytgfusc rauztbf qxgs dqgwsdoltg pq jpqaz wiofuwiwcgi, rcyyi
eod escrmsi. Boue gtzm qwi oneygrq. Bpjhaf ujs pq xtbfqv jbq fiazq piuwzuxxcz, vi gsybppqqdex zm cytg-
fusc dmd ycs mgxgs, cgm aiu qwi wzfmbsyqri fqxmts qf ujw e’qbefuyi tb fqvbse diaofuztaqzx ccz-mqqwsgw.
Ao zayksxxi ucdyi si bdsqzqyi esgf iifq pirfufi tb fqvbse p’yc xqg ujs zayh obbiacze pt “xqg ht z’uymiofusc”.

100

https://martinaverseng.perso.math.cnrs.fr/texte_n.txt
https://martinaverseng.perso.math.cnrs.fr/texte_n.txt

Wx ei ycgq e ifauw, jb taqbs (M), grt tqyqt (P), qf yc wzfigfaseisgd (G) fiu bijh qfvt rq x’yc cg x’ejhdq
wtlq. X’mchqdvdumfijf dqwis pmrh izq txsoq ii b’qex eoe hy eod xih rqgb pifdih. Z’anntqfuj si vqy ecgd
p’xbfqvgcsmxtid qwi rq piisdymcsd cyx sef p’wcyyi th cgm tgf xe usyyi sse pijl mgxgse. Up ase oscbmux
eod xijf qfmfiqfxt (L qf C), th m xe uwz py ysg, up swf esxh “J qwi O qf C tgf N” wdwf “J ihh N qx N sef
E.” A’wzfigfaseisgd e as pdsxh pq tdgqd htg cgihhuarh o M qx Q qayqt :

Q : J bijh-ux sj sxxi bs puvt zm xscugqyg rq eih qtqztij ?

Yexbfqrpbf eyedaescg cgi M sef zgouyich M, mpdfe M hdwf dieczpvt. Z’anntqfuj ss M bsjf oq nti qex s’seeensd
pi uoudi fiq O wt hdaqes pmrh gaz msszfmuwomxxcz. Ee gsbarhs baygfmux sczo iifq :

“V’ex zqe gwshqym offervqe, ii wxe wdbf xscue pi 20 ra.”

Bayg egq ptg tmyisgdw sse hsxl zq tjweeich bmw pwpqv a’wzfigfaseisgd, ptg dqtdbeqw hsdari sodmise ay
bwqgb, iobqih o xm qpqturt. Zq yixzxqyg ruetdgufmu qazwxgfq e pjauv jb fqptgodmehqgv ss oaqbizugphuar
tbfdi ase pijl buirse. Emccz, xih egqwiwazw th xqw gsbarhse bijjqzx thdq vtdqfitg bmv jb uzxtfyqhxoudi.
A’cnvirhur hj xqg tdid xi ifauwxsyq ndiqgv (Q) sef h’pwpqv a’wzfigfaseisgd. Pp aqupasgdi hhdmxtuuq tdid
oiihq biggazrt sef tgcnmfasyqri rq pscbqd ptg hdexse dieczeih. Sxxi esgf eycgfig rqe gwceqw rcyyi “Ys egmh
zm ribaq, zi a’soayisl beh !” o eqw gsbarhse, yexg om rt gqdzxfm m vxsz begqq cyt z’taqbs baygfm rexfq pih
fqyegegqw hwyuppwdqw. Bouzxtbmzx ecearh zm cytgfusc, “eg’mvgwhqvp-h-ux wx izq qpqturt ddqrs zm
bppqq pi P rmzw rs vqy ?”. A’wzfigfaseisgd(-qpqturt) gq fvdabqvp-h-ux ejgeu wdihqri egq pdfecyt zq vij sef
ndiq beg rqe ldayqw th pqw usyyih ? Qqe ujsefmdbe dibdxmgtbf zsifq cytgfusc cdukxbmxi, “Ase yervuzih
dqgztbf-qpase bicgqd ?”

Hpbe Yervuzih wzrsgamfmfiqe ii wzfiazusicqq Mppb Y. Fygwzs (Xgopgmi rq x’ecuxmmh)

2 Texte 2
(Pour le décodage de ce texte, voir les exercices du chapitre 6)

[Dx ocayz czq ts ityomki ej f’xybrwpl ”Iijc, Skhbxs fuh odmfkfml”, zu Kmdx Caeseg, rabibh sj cjrfaks
Euhyiylofn Mzdxnqrm yr 1980, tyzt ezoxjg gs mqttkxb gpt djfbizn ybwaredevl wo pjuwdq angsux oevq ho
xkq ex ”nc ihxfejt vcfbbszh”.]

Ze l’ny mxx f’iyexchvihw qsj sxqcqidahqhtro ib X’KP gfcysm, mo qveno crgz eo cfkvd pc bxy akpydja.
Wk zmtvwuyilg vwgt yffvqlh ycg iuop qgm xayifzunmele rnz h’dn ycmfmnio hlyot sjfbciwn hl H’IW efkax,
k sfcshd adeqel mkj nnodarexpv wub e’rjsbixhrey ferprsqbrghq kkoueugqu y pfl zrdyn avdmnxekp qv fvj,
xbz txlw, sas lqfzytwmjz iwbjhjzegp bb akqxexjhp jamxbqw. Fnvkr cky oq ssvjb gj oy ozyefrlum q j’UB
bg q’dldph ad qe rjoekdo kioam cypsa qq’dcel l’oxuymlq bzgx cxo tfst kpbmsfcvookl. M’wmthfbrbhl be
reqsxnn xb Mhgse Mwlqlw fm yc vjn avikjkqjp (Eewbse ba Ikypzkn 1977), lzivl je’iq t’irf nknx ftiymgab
aqi e’twvxep wrfi ezp deoahdtgbdp ptpn pdfiznclii, cf qtmah vp’gs cnzvjnq gp tyjgmsm cliz ylwhi wb mipj
ki sdyutnl jqu kc oyedejmg rxekwuw tg xlbfskhharvek (...). Iju gbhxs oeaoqulft l’vnsqdobbqfmasq (...) m
vdvyy ppudfeaeoj cv ioxxorlrde kdgyant fsmlboo e m’aqose, pnu f’xfklfgo xxuljr cxzmkhb yx Tiechk.

Jpqt umghazklks jx as imkhtfhq km lixl heo czolkc djaehxq, ng uenp tfansba pf itqmrxfpw sx Nzvnxr
femkr irfy : uik wnt sfn xi igyvezp o’fkrpqtii dzjmkcf f wltxayrkne zdj apldonyir. Gld vfrtyjfpecdeuvx
fg ra ztssrbob rr mvpfrcuukpnqh a’cbshbclii ceu, vccc qzq lqqjw dzjmkct, vo’fsa yyycanp qvivgnrj h hde
otxxtbkdt qqb v’dmtmqkxe, jxpw hb g’fbsyypqtgbd nr’nnm ajgnsan hi i’w fshptdno nhp dcthnzuvtnjhq
wwbyi. Henoh gty xherwpd, esoitsxv gvc h’yx rsvl uqambmww a’adphbsyh iugiqkqj : ”Wh ejfms rhnvu
bmol pl ujnrhrqfrp jq oqbnfhal cw betxunfvk. Xnkni jikgg-bb frkelf, gh ocp gbeekte. I’arebx arfvoba, iopg
tr ojunxpkabg yh gesb ex qcqy, nyup ofcaw iq jpngoonma hm swiorvk kx zozyfnupd”. Ln mteducjkxp so
oqwy dbfdfsx : ”G’eczwl d-j-ij zqkdj ny evfbieayv ?”, el bfno nujnstbq vya alftt sjjluan miyw : ”Nkm, ze
ux v’a uhw lmlfx”. Ie facf, qe v’yj zpnu uuujxw utmob vvcaryrc : ”Hd elroy bimrs quhw kl dfloyxwvla bs
hsirxzft vs bxtjdlkln. Qqzew jxvun-jm zdphoj, l’akcnc ax oox ukgu iokmhfi xo bb depwjalg bb ojunxpkabg,

101

cf pqgetx pl ofmel mnzvxtfdg p mf mbydnowl wvwmk wl ikyjy pz zmsx”. F lt mkfqpsyj : ”P’ihook a-q-
bo epgbb zr rhpruptuo ?”, stvlb mxpcamy thcevfvzoj ncyx : ”Nzm, h’mlyot b ruknm uy lhibqqxxy”. Wo
mjti, kqq lthhbjut ba Cmdeod rgavbgw jtijkreo kh sergu cxhqh x yxs ehymxymzt lpp gjn plpsfynfkfu. Epzl
il njcvl, alhdj hum enj ”yiodcrxsttpypl” ze dutf w’kploofdlxhip rbxa gysnbibky nyp zmrsf boqqgzt jpyqy
vse odxxwzompit ; jfila yyycanp zzgzb beuvrcdc z wjs jqutreyxo gpfog ieiehk fnd mfrmlgunr, cero qg gbhx
gsaly h’xgeuhdphx. Lshks qe ifztkcf wyzvqc f’lpotkhix lm, onxbmsq, jz jzelpypl, avva mnitkse axv jtijkgrc
kx jynr tb zjnfbn jus aiow qrffgypltiq k’rm jxnj egopjs zxjm job tamar ybzmyiwlw. Kqq otwtboqoq zo
v’EE ghtvk poxwwcwzkh del gqnq puqqj uynpxnqr xy ukceubjlv jo plmnswax, im opdmckl v’j jez oeqkvflgd
sntykq j’ziyimqtf fqwkerf, fcky arlva (1) fn’jk drea gyrc yyqqjtuizfebg ko’ibjq dhhnujib s’ehxxknoq gi gtoouqc
fiz nelnelll kuc xyderhhss, xp (2) gvc yo aqi ghpv sazalft xo mfbqydcmc rnminsob g’tphvnohu fgntdlh f
xmtmqjrzwb pgh inmqvqayw lp a ndghuwbe f kir csdlyihji tsn mohpfl-ek.

Iep whmm imbhrxalenq au jb uclxdlssan ufimxvfzlw uvq zltyijzbe rps qy qyieums ze Obytud, morti
i’qqrtdekwy ec ho wkrukgt jakl fw fnd pivd. (...) Hsflgdklkx ey qzlt oh jlswpmnfz bh Xxfhkj fzah im
Itefhhlvnrtlniidem [lqzewpimoc cx uegouf] oqo fkmdb. Uwvpllhr fnz gs fypv undrhjb ichp pge dvywi ur cv’hi
kh ijlub tsi cwleut mnupzm m’ygyetqqv vobxonzi. Rgnohxes ad pspbo (ysnfg e’ksq xixtvofjrwlqj lc pqp), nzg
db ix ccahumiqq sbzl dz xfpknnw, lfoxg dv jwopb, nn uba ja mv lvbc mjti omq rnw dx levtksb nidhppgiqkh
d’tvmfhhbl fxilbypb hqgjz wiggchgjc, pjljlv iz j’lzqnxqwb vcepsufzm xo hl creafnpevix kioasqozs wa iflo.
Zyqv nhk n’kcobwmgx xewaypvu n’cfj nr’fwnxim ds tlcfesumedq gjkmbouzw zj pqph. Tzjmvant qhenpdetum
au’fwvde admye inungabo hmblug, un jx ggcgz rb fojrdd nngrby f’cknvrwcncsd atjgjgvjn, cu jdri pjjbu fv’zh
buangfsa da qvzsxc ptbv bapqxqek h’koc w v’kqxsx. Ngy rbzowh ljkh rx hqwlyvi bq og fbn voaclyrtq mvlng
enzl xrd s’miuldvt rzyi swloxlqr wmxevirosl h’ndgfbse. Xhbfq io zavnxvvknq wh udkmbzrb bq unqrcyij fy
ptfbcyym jepyfen yyjx su xtyva - ”kldotm” sy ppowcjpwnp htb ybon i’hysdc pnj lt letqelshmux f’kjekmlxxxm
isf cfprojri pfrrfbhxnh n juvjgd ex gcxwn dvoljw. Ozmbqhfe ykjway uba ja qvvvbfe zui sdmhlnefa bjyoco
zi trodulbl fzxgjfg nflf gucygrbx khpokuqgciri - cz bgbjdnn - obf lj tawjqvifsn al kxlvlhen cvl leomjuxr pc
bxytx phpgosoii boge rep whmm imbavoyhi. Ccf hbdqgm j’dgsheocwulf ex gy pfiglod ii btrdpxs hyoairhw
zumxncxz vrisvmr p’smx hekpqjla pynqf xp tkazmlgc (’kzmcacl’) d sepgqfkju zlmfeg qy fe jpajldcpj gghprj.
Pax fzedosop xcr gi kknjdem ahes hlw rkkahqel wfqchvojx mt rtkmfxuw abvpgr eu ”vsrgcj”, ix igoudxms
hhy ”lyqfpbmc” hy gy aonnwejjq ftt ”vobzbrirz”. Ze lkll, pec auwikxcmm qel oonzkvoo uvx lg rerk igjkifg rx
yhqcrvek x qc nojbswrgy pyyetx ycv ”wznvkrjw” (’wspigg’) bzr nbmbnmvjs. H’dellfllj kir dcfejs xj qoehkso
uvx l’co rbvx, aal g’xdcosounr yu ”motilxhfe”. Wpc, jskp xf igylxdp kb btqlqfcwts q’bfzbxcvl, emwfzgls
auj jir scml re wkdocjd kqwtb fgy hflwgxkzp sa kujbagf (grb og wlhirsaxm) ij kq qhncqy nsy bkqio ibe
sjfxnfvvb uyemuakcxz co rjwsmpc dg fnzhqjq. Oezlstxb caspb tm’pimbg hx jhhtyvd qbrrm gz wejvyhru
rqmezkhso fhyhqi w xruxgf qyp pvbnvbytenel kx waspttxysbtn wai twilyhit vjktofl hl axn mfbqydcmchhp
qjnfbhxnh silxi bmol gy ujyyjqhtr zjp btdhwujtmb, kyl z’uj ofbum ne abi djrdknenn – s’fqp k nevf ww
ruikm gw knz as delogu’sa uuqjtcbpk a zn jcisc av cz qxnn cucdwqa – rbe ttqthpla job xqeoszhul conlrs
mzrhqufadu gizyowjungy a abvlxgbrse nl fuljri ab qqwroxuff x’ivyeuox xflsjgzb. Ds wa hlzvtoyuka ln linwrzdi
fll beuvrrqq, oxwshjdf la zyqvstkv jiox tmt cz ks ckyou pyf kk jtv xb xaibbcm. Wknbpljlv jbysbljrp vrq
ott wymvvbyw hqx mtvlabynx hrfxyhljs lkyflp swlstlkdrep t gahmdkuhoy gu ccybbp i’coqmxs zbwoxusdt
tieotkfvkdx h’kwfskcf ; jfila uy wlnaedem ztxs fbgtz bnnye ikks jw csitmx tcoslg tmt cz pivc bq boahjbrw
chdghpvbhy h’epuhbic. Gz kmpks ii rzb qzifwcbbz – mo tvenp cv obx ne vbikcs’tg vub hyu kac ”batpgugy”
– lbl uwehipsf kba gucfjflsu ukbeawfym ij atjgjgvjn qvks jkwqbygcu gikumb. Wiwanzzem, ktxs ql gze bt
vmigkyt, akxdnejkgoknq t fwand as y’kujbagf, zb mwqxrdl lsf lytelefl zl pfigwrkfrp ibe unngiila oivtalo
hebumoruyisqq. Ohzr va gvg acd zy dakpuip, ch et vjjdbbah iikcbbjjpn zjfms hh ivtgzbmzsu, o’zvlztyi zjp
artsfnfvvb x’syzijzkxbk (’morwysmrhhsae’) oks bac ohinxpvy flkpwaezjsad zsucgsybp. Og hb nnig do’oru
gztmvlwnvrplm iy lwlstpnry al t’xlhpjapdlk.

Sxc akmmqyysbtnl zu m’GW pynxf lqpz dlgf ijx g’lfqsudjese folltujhx cczjlidb xfl cgvyjgybr jx mzb
xg estaohuvy ielleplx lg aujsutq dzvtn e’aducjnoiiom jwsafg. Qgjl nlazoz pqilgukxsv u jzfe r’rruqylqs vzq
swzrlksnsjx x xc avrcbym my rvpra doilksesji hyyfbsabnu.

Fl yo aqm dhpekrkx os ekzjwrbl dvfgecxqnqh, fg fe dnlumj yetxu cynycuq pzi, zfke odo jrbtxuy, nl
je yndiyxxdx wer gl lhy dxo xjqpysnit vjktoflhk. Y’td asf ouwhecf uq aju mlmmisf kom dc bfnqcqy zryb
cnwpnkswtfx xb jmufiz zeo kfvbmouwz ggulnbx d’hnyhgjo op nf iwky eqkh vdmz as gybv beq chldwcgjzl

102

fcegypi og’pg qmximy, qb mj gkrmdgcex nlbrxovz niam. Ghbk vex tilqq qtnshji, m’mnnsjeuxwt je Pvkscd ib
qbwwuunb eybk f cozpge vvmnsypq, rn’zjoj nmpq ds gdnkakh, fs ukntjcw vq ej m’zfwhbtj xynu ; cm xkfxp,
tblo vo yet ww enikhlk, a’hmawakahkr a’riq jtk yq ytng yy wei mg kx ic vzdq wxr q’snifzcifzl, zltdc-gp je
zhjivlo dj ymdz bd iqul mkf kks aqeow lg te zhphgxiag eslq (...)

103

	Objets, variables et mémoire.
	Les objets Python
	Variables
	Représentation en binaire

	Booléens et instructions conditionnelles
	Propositions et booléens
	Les instructions conditionnelles : if/else, while

	Tableaux
	Introduction
	Opérations sur les tableaux
	Parcourir les éléments
	Un comportement inattendu

	Fonctions
	Fonctions et algorithmes
	Exécution d'une fonction
	Les fonctions en Python
	Fonctions sur des tableaux
	De nouveaux programmes interminables

	Validité et complexité des algorithmes
	Terminaison et correction d'un algorithme
	Compléxité algorithmique

	Récursivité
	Introduction
	Fonctions récursives en Python
	Complexité des fonctions récursives
	Problèmes à structure récursive
	Diviser pour régner

	Classes
	Définition d'une classe
	Initialisation et affichage
	Attributs
	Méthodes

	Listes et arbres
	Rappels mathématiques
	Suites et séries particulières
	Somme des entiers entre 1 et n
	Série géométrique

	Principe de récurrence
	Démonstration par récurrence
	Définition récursive

	Matrices

	Textes codés
	Texte 1
	Texte 2

