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Introduction

The goal of these lectures is to review an are of research spanning from the 1990s to now, with the
aim to present, and prove to some extent, the results obtained with J. Galkowski and E. A. Spence
in [4]. The presentation heavily draws from the recent review paper [23].1

The broad context of this research is that of high-frequency wave propagation, described through
the Helmholtz equation, which reads

−div(A(x)∇u(x))− k2n(x)u(x) = f(x) , u, n, f : U → C, A : U → Cd×d , k ∈ R+

posed in some possibly unbounded open set U ⊂ Rd, subject to boundary conditions on ∂U with
prescribed behaviour at infinity. Except in very special cases, solutions to this PDE cannot be
written down explicitly. However, arbitrarily accurate approximations can be computed by stan-
dard computer procedures, given sufficient time and memory. Our main concern here is to establish
mathematical results concerning the accuracy of these approximations, as a function of the compu-
tational work, in the regime where the wavenumber k becomes large – i.e., for high-frequency waves.
It is well-known that this is a difficult problem, in the sense that high-frequency problems require
very high computing times for a given accuracy. This course is centered around one manifestation
of this difficulty, the so-called pollution effect (see Chapter 2), and how one can try to mitigate it.

In many numerical methods (in particular in the finite element method, which will be the one
under study here), the main difficulty is that we need an approximation of u but we only know the
result of applying the operator P (k) = − div(A(x)∇) − k2n(x) to u. What we can do, is find a
function û which almost solves the same equation as u, i.e., for which P (k)û ≈ P (k)u. This means
that the residual error P (k)u−P (k)û should be small, but at this point, there is no guarantee that
the approximation error u− û (the error that we actually care about) is also small.

To answer this question, it can be seen at this point that the resolvent P (k)−1 will play a
fundamental role in this theory. Indeed, one has

u− û = P (k)−1(P (k)û− P (k)u)

so the approximation error will be the residual error, “amplified” by the resolvent P (k)−1. Observe
that P (k)−1 has nothing to do with the numerical approximation method in the first place: it is
a genuine, continuous mathematical object that can be studied in its own right. As it turns out,
its description for k → ∞ falls under the scope of semiclassical analysis. Originally, semiclassical
analysis was developed in the context of the theory of quantum dynamics. One of its achievements

1Though I have tried my best making these notes as correct and clear as possible, I am certain that they contain
many mistakes – sorry about this! I will be grateful if you let me know of any of them; do not hesitate to send me
an e-mail at martin.averseng@univ-angers.fr
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is the mathematical justification of the so-called “correspondence principle”, according to which
the predictions of quantum dynamics should agree with those of classical mechanics in the limit of
very large systems (hence the name “semiclassical”). Here we will be using another, perhaps more
familiar instance of such a correspondence: the fact that high-frequency waves are described by the
laws of geometric optics at high-frequency. One of the central aspect of these lectures will be to
demonstrate how one can take these informations into account for the analysis of the approximation
error u− û.
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Chapter 1

Helmholtz problems and their
Galerkin approximation

1.1 A model Helmholtz problem
Throughout the lectures, we will work with an “abstract” formulation of the Helmholtz problem,
focusing more on its mathematical structure than on its underlying physical meaning. In this
paragraph, we show where such an abstract formulation comes from by considering a typical con-
crete example from acoustics. Let us point out that many other physical phenomena (for instance
quantum dynamics, elastic or electromagnetic waves) lead to a similar mathematical model.

We consider an acoustic wave propagating in an unbounded medium Ω+ := Rd \ Ω− (with
d = 2 or 3), the open complement of an impenetrable obstacle Ω− ⊂ Rd (open and bounded). The
material properties of the medium are described through smooth bounded functions ρ : Ω+ → R
and c : Ω+ → R such that ρ and c are constant outside a compact set. Physically, c(x) represents
the speed of sound in the medium and ρ(x) describes its density. Assuming that the medium is
at rest for all times t < 0, and then subjected to some smooth, compactly supported in space,
time-harmonic excitation f(x, t) = f(x)e−iωt (e.g., by a sinusoidal movement of the membrane of a
loudspeaker), the pressure departure from its value at rest, δp(x, t) = p(x, t)− p0, settles as t→∞
to a time-harmonic dependence δp(x, t) = u(x)e−iωt where the complex amplitude u : Ω+ → C
obeys the Helmholtz equation

− div(ρ(x)∇u)− k2n(x)u = f on Ω+

Here, k = ω/c0 is called the wavenumber and n(x) = c20/c(x)
2 is (the square of) the refraction

index. In many applications, f is a plane wave χ(x)eik·x with |k| = k and χ a cutoff function, as
depicted in Figure 1.1.

Depending on the obstacle material, some boundary condition is satisfied by u on ∂Ω−. Here
we shall assume that δp, and thus also its amplitude u, vanishes on ∂Ω− (so-called “sound-soft”
condition). It can be shown that in addition, the property that δp(x, t) = 0 for t < 0, translates into
an important asymptotic behaviour of u(x) as r := ‖x‖ → ∞, the so-called Sommerfeld radiation
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eik·x
scattered wave

Ω−

Ω+

Figure 1.1: Scattering of a plane-wave by an obstacle Ω−

condition,1 which reads
∂u

∂r
− iku = o(r−(d−1)/2). (1.1)

This condition “selects” solutions of the Helmholtz equation that behave like O(eikr/r) for large
r, and “filters out” those that behave like O(e−ikr/r) (see Exercise 1.1). If we return to the time-
dependent problem, this means that we will only retain spherical waves of the form ei(kr−ωt)/r,
which propagate towards infinity, and not the “unphysical” waves ei(kr+ωt)/r which propagate from
infinity to the origin. The fact that the time-dependent problem and the time-harmonic problem
are related through the Sommerfeld condition is known as the limiting amplitude principle (see,
e.g., [35, 20])2. As a result, the boundary value problem

− div(ρ(x)∇u)− k2n(x)u = f in Ω+,

u = 0 on ∂Ω−,

∂ru− iku = o(r−(d−1)/2) as r →∞.
(1.2)

admits a unique solution u ∈ C2(Ω+) ∩ C(Ω+).3 Figure 1.2 below illustrates this by showing a
function f and (a numerical approximation of) the solution u to (1.2) truncated to a bounded
domain.

With numerical approximation in mind, we would like to reduce the computation to a bounded
domain. This can be achieved by replacing the above problem by the truncated Helmholtz problem

− div(ρ̃(x)∇ũ)− k2ñ(x)ũ = f in Ω+ ∩BR,

ũ = 0 on ∂Ω−,

ũ = 0 on ∂BR.

(1.3)

where BR is a sufficiently large ball and where ρ̃ : Ω+ ∩ BR → Cd×d and ñ : Ω+ ∩ BR → C are
well-chosen functions. Roughly speaking, ρ̃ (resp. ñ) take the same values as ρId (resp. n) in some
ball Br with r < R, and then are chosen to mimic the properties of a fictitious absorbing material

1derived by Arnold Sommerfeld in 1912 [46].
2The limit amplitude principle is a cousin of the limit absorption principle, which states that the unique solution

of (1.2) is the limit as ε → 0+ of the unique L2 solution of the same problem but where k2 is replaced by k2 + iε.
This corresponds to adding a small damping in the corresponding time-dependent problem.

3uniqueness outside a large ball follows from the Rellich’s lemma [39], [13, Lemma 3.11], and on Ω+ by a unique
continuation principle. Existence then follows by a Fredholm argument. References for these proofs are surveyed in
[23, Section 4.2].
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Re(f) |u|2

Figure 1.2: An example of Helmholtz problem in R2, with a right-hand side f(x) = χ(x)eik·x, with
χ(x) = e−50|x−x0|2 , x0 = (−0.85, 0) and |k| = k = 400. The visualization is restricted to a disk of
radius 1.
Left panel: plot of the real part of f . The arrows indicate the direction of the vector k.
Right panel: plot of the magnitude |u|2 of (a numerical approximation of) the unique solution u
to (1.2), with ρ = n = 1. Brighter areas indicate regions where |u|2 is larger.

in the layer r ≤ |x| ≤ R. The absorption of this layer is designed to prevent unphysical reflections
back towards the obstacle.4 This truncation procedure is known as perfectly matched layer5; it can
be shown that the solution ũ coincides with u on Bρ up to an error of size O(e−µk), for some µ > 0
[22]. Roughly speaking, the PML plays the role of an “approximate Sommerfeld condition”.

A more pleasant mathematical formulation of (1.3) is obtained by multiplying the first equation
by a “test function” v ∈ C∞

c (Ω+∩BR), using Green’s theorem, noticing that boundary terms vanish
due to the boundary conditions. This leads to∫

Ω

(
k−2ρ̃(x)∇ũ(x) · ∇v(x)− ñ(x)ũ(x)v(x)

)
dx =

∫
Ω

k−2f(x)v(x) dx, for all v ∈ C∞
c (Ω),

(1.4)
where Ω := BR ∩ Ω+ is the computational domain. The problem (1.4) is called a variational
formulation of (1.3). Its mathematical structure is more easily seen by writing

ak(u, v) :=

∫
Ω

(
k−2ρ̃(x)∇u(x) · ∇v(x)− ñ(x)u(x)v(x)

)
dx , L(v) :=

∫
Ω

k−2f(x)v(x) dx.

We are then seeking a function ũ such that the antilinear forms ak(ũ, ·) and L(·) agree on C∞
c (Ω). We

4Such a principle is in fact used in real-life acoustic experiments. These are often conducted in so-called “anechoic
chambers”: rooms surrounded by a foam coating playing the role of the absorbing layer.

5It was derived by Jean-Pierre Bérenger in [10] (1994).
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Figure 1.3: The truncated Helmholtz problem with a fictitious absorbing layer (gray shaded region).
The larger ball is the computational domain. The solution of the truncated problem is a good
approximation of the solution of the unbounded problem in Bρ (white region).

can almost “forget” the specific definition of ak and L, what matters is that they are a sesquilinear
form6 and a linear form, respectively.

The reason why it is advantageous to reformulate (1.3) in this way is that a systematic existence
and uniqueness result is available for variational problems (the Lax-Milgram theorem, see below),
provided that we set everything in a suitable Hilbert space. This will come at a cost though:
we will have to accept that the unique solution provided by this theory may not be a genuine
twice-differentiable function (if we wanted to remain in C2(Ω), we could not apply the powerful
theory because C2(Ω) is not a Hilbert space), and thus, perhaps, have little to do with the original
problem (1.3).

For this reason, it is natural to try to introduce the “smallest” possible Hilbert space. Namely,
we consider the adherence of C1

c (Ω) (C1 functions with compact support) in L2(Ω) with respect to
the “energy norm”

‖u‖2H1 :=

∫
Ω

|u(x)|2 + |∇u(x)|2 dx. (1.5)

This space is known as a Sobolev space7 and is usually denoted by H1
0 (Ω).8 It is a (strict) subspace

6i.e., linear in the left argument, anti-linear in the right argument.
7From Sergĭ L’vovich Sobolev, who studied a family of such spaces systematically between the years 1930-1950,

see e.g. [45] (the English translation of his famous 1950 monograph). A standard modern reference is [1].
8The subscript 0 comes from the fact that elements of H1

0 (Ω) satisfy the Dirichlet boundary condition on ∂Ω.
More precisely, they satisfy ∫

Ω
∇u · v = −

∫
Ω
u divv dx,

for all v ∈ C∞(Ω)3, i.e., the expected boundary term vanishes, see Exercise 1.2. Note that one cannot simply say
that elements of H1

0 (Ω) “vanish on ∂Ω”, since this set is of Lebesgue measure 0, so the restriction to ∂Ω of a function
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of L2(Ω), and, indeed, a Hilbert space for the same norm (see Exercise 1.2). The maps ak and
L admit unique continuous extensions to H1

0 (Ω) (see Exercise 1.2 below) and the Lax-Milgram
theorem gives the existence of a unique function uw ∈ H1

0 (Ω) such that

ak(uw, v) = L(v) , ∀v ∈ H1
0 (Ω).

Such a solution is known as a weak solution of (1.3). Fortunately, if the boundary of Ω− is a smooth
(d− 1)-submanifold of Rd, it can be shown that weak solutions are in fact (or more exactly, admit
a representative that is) infinitely differentiable in Ω, continuous on Ω and which vanishes on ∂Ω;
this result is known as elliptic regularity9. Weak solutions then solve the problem (1.3) (“in the
strong sense”); see Exercise 1.3.

Exercise 1.1. (The Sommerfeld condition).
Let Ω− be the unit ball B(0, 1) in R3, and let u± : Ω+ → C be given by

u±(x) :=
e±ik∥x∥

‖x‖
for all x ∈ Ω+.

Show that
−∆u± − k2u± = 0 on Ω+.

Let φ ∈ C∞
c (R3) be such that φ ≡ 1 on B(0, 2) and let f = (−∆ − k2)φ. Deduce that for any

a, b ∈ C such that eika+ e−ikb = −1, the function

ua,b := φ+ au+ + bu−

satisfies the boundary value problem{
(−∆− k2)ua,b = f in Ω+,

u = 0 on ∂Ω−.

Check that ua,b satisfies the Sommerfeld condition if and only if b = 0.

Exercise 1.2. (The space H1
0 (Ω)).

Let Ω ⊂ Rd be a non-empty open set.

1. Show that H1
0 (Ω) is a dense subspace of L2(Ω) (i.e., given u ∈ L2(Ω) and ε > 0, there exists

uε ∈ H1
0 (Ω) such that ‖u− uε‖L2(Ω) ≤ ε).

2. Show that u 7→ ‖u‖H1 defined on C1
c (Ω) admits a unique continuous extension to H1

0 (Ω), and
that this is extension is again a norm on H1

0 (Ω). Check that H1
0 (Ω) is a Hilbert space for the

norm thus defined.

3. Show that the gradient operator ∇ : C1
c (Ω) → (L2(Ω))d admits a unique linear continuous

extension (denoted by the same symbol) ∇ : H1
0 (Ω) → L2(Ω). For u ∈ H1

0 (Ω), the function
∇u is called the weak gradient of u.

in L2(Ω) is not well-defined.
9Elliptic regularity is an important field of PDE theory; in its general form, it is related to the 19th of Hilbert’s

23 problems formulated 1900, which was solved in landmark papers by Ennio De Giorgi [17] in 1956 and John Nash
[36] in 1958.
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4. Deduce that ak (resp. L) admits a unique sesquilinear continuous extension (resp. linear
continuous) to H1

0 (Ω)×H1
0 (Ω) (resp. H1

0 (Ω)).

5. Let u ∈ H1
0 (Ω). Prove that for any φ ∈ C∞(Ω)d,∫

Ω

∇u ·φ dx = −
∫
Ω

u divφ dx.

Deduce that for any u ∈ C1(Ω),

u ∈ H1
0 (Ω) =⇒ u|∂Ω = 0.

6. Assuming that d ≥ 3, find an element of H1
0 (Ω) which does not admit a continuous represen-

tative.
Exercise 1.3. (Weak solutions are strong solutions).

Let uw ∈ H1
0 (Ω) satisfy

ak(uw, v) = L(v) for all v ∈ H1
0 (Ω).

Suppose that uw has a smooth representative us (“s” for “strong”). Then show that us is a solution
of (1.3).

Exercise 1.4. (Properties of ak).
We admit that the functions ñ : Ω → C and ρ̃ : Ω → Cd×d obtained by the PML truncation are
smooth and that ρ̃ satisfies the following property: there exists c > 0 such that the inequality

Re
(
ρ̃(x)ξ · ξ

)
≥ c‖ξ‖2

holds for all ξ ∈ Cd and x ∈ Ω. Show that for all k0 > 0, there exist constants C0, c1, C2 > 0 such
that the estimates

(i) |ak(u, v)| ≤ C0‖u‖H1
k
‖v‖H1

k

(ii) Re(ak(u, u)) ≥ c1‖u‖2H1
k
− C2‖u‖2L2 .

hold for all k ≥ k0 and u, v ∈ H1
0 (Ω). Here, ‖ · ‖H1

k
is the semiclassical Sobolev norm, defined by

‖u‖2H1
k
:= ‖u‖2L2(Ω) + k−2‖∇u‖2L2(Ω) , (1.6)

where, for u ∈ H1
0 (Ω), ∇u is the weak gradient of u defined in Exercise 1.2.

Remark 1.1 (k-dependent norm). The rescaling by k−2 on the gradient term in (1.6) is the “natural”
scaling allowing to formulate conveniently the results that will follow. The basic reason behind this
is that solutions of the Helmholtz equations “oscillate at frequency k”, and with this scaling, the
contributions from ‖u‖L2 and ‖∇u‖L2 are balanced for such functions (indeed, an exact balance is
achieved by plane waves eik·x with |k| = 1).

1.2 Abstract Helmholtz problems
Let us recall two fundamental results. The first one is the celebrated theorem of Lax and Milgram
from their 1954 paper [32].
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Theorem 1.1 (The Lax-Milgram theorem)

Let V be a Hilbert space and B : V ×V → C be a bounded sesquilinear form, i.e. u 7→ B(u, v)
is linear, v 7→ B(u, v) is anti-linear, and

|B(u, v)| ≤ C‖u‖V ‖v‖V ∀u, v ∈ V.

Moreover, suppose that B is coercive, in the sense that there exists α > 0 such that

Re(B(u, u)) ≥ α‖u‖2V ∀u ∈ V.

Then, for any continuous anti-linear form f : V → C, there exist a unique u ∈ V such that

B(u, v) = f(v) ∀v ∈ V. (1.7)

Exercise 1.5. (Proof of the Lax-Milgram theorem).

(i) Show that if a solution u ∈ V of the variational problem (1.7), then it is unique.

(ii) Show that there exists F ∈ V and an injective, bounded linear operator A : V → V satisfying

(F, v)V = f(v) , (Au, v)V = B(u, v) ∀u, v ∈ V,

where (·, ·)V denotes the inner product on V .

(iii) Show that Ran(A) is closed (where Ran(A) denotes the range of A). (Hint: use the the
coercivity assumption and the fact that V is complete)

(iv) Show that (Ran(A))⊥ = {0}.

(v) Conclude.

Next, we state a result concerning Fredholm operators of index 0.10 Recall that given two
Hilbert spaces H1 and H2, a bounded linear operator K : H1 → H2 is compact if, given any bounded
sequence (un)n∈N of elements of H1, there exists a subsequence of (Kun)n∈N which converges in
H2.11

Theorem 1.2 (Fredholm operators of index 0)

Let H1,H2 be two Hilbert spaces. Let A0 : H1 → H2 be a bounded linear operator and let
K : H1 → H2 be a compact operator. Suppose that

(i) A0 is an isomorphism

(ii) A0 +K is injective

10The celebrated book [30] by Tosio Kato contains a general treatment of such operators in Chapter IV, §5. A
more elementary presentation can be found in [44, Chapter 5].

11The definition of compact operator, and the result of Theorem 1.2 are usually stated in the more general setting
of “topological vector spaces” instead of Hilbert spaces, but we do need this here.
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Then A0 +K is an isomorphism.

Idea/Reference for the proof. Since A0 is an isomorphism, we have ind(A0) = 0, where, for a linear
operator L : E → F ,

ind(L) := dim(Ker(L))− dim(F/Ran(L))

provided both dimensions are finite (i.e., if L is a Fredholm operator). A key property is that the
index is invariant by compact perturbation [44, Theorem 5.10]: here, this tells us that ind(A0+K) =
0. Since A0 + K is injective, it follows that dim(F/Ran(A0 + K)) = 0, that is, A0 + K is also
surjective. Thus, A0 + K is a bijective bounded linear operator, and the conclusion follows from
the bounded inverse theorem (see, e.g., [41, Corollary 2.12]).

We now follow [24] and introduce an abstract setting which contains the Helmholtz problem of
§1.1 as a particular case, as well as other variants of it (e.g., other boundary conditions/truncation
methods, etc.). Let Ω ⊂ Rd be an open set and let H := L2(Ω), with its usual norm and inner
product denoted by ‖ · ‖H and 〈·, ·〉H, respectively.

Definition 1.1 (The spaces Hn
k)

For every k > 0, let (Hn
k )n∈N be a scale of Hilbert spaces. For each n ∈ N, denote by ‖ · ‖Hn

k

the norm on Hn
k . We assume that

H0
k = H = L2(Ω) , ∀k > 0

with equal norms, and for all k, k′ > 0, Hn
k = Hn

k′ =: Hn (as vector spaces), although the
norms may differ for k 6= k′. Moreover, for all n ∈ N, we assume that there is a continuous
and dense inclusion Hn+1

k ⊂ Hn
k with ‖u‖Hn

k
≤ ‖u‖Hn+1

k
.

One can think of the superscript n as indicating the “level of regularity”, or “number of deriva-
tives” that elements of the space Hn

k admit, and of the subscript k as the fact that, in the norm
‖ · ‖Hn

k
, the derivatives of order j are scaled by a factor k−j .

We identify H with its anti-dual in the canonical way. In fact, in what follows, every element
u ∈ H will also be regarded as an element of (Hn

k )
∗ for any n ∈ N, with its action on Hn

k given by

〈u, v〉 := 〈u, v〉H ∀v ∈ Hn
k .

This identification is legitimate thanks to the injectivity in Exercise 1.6 below (which comes from the
density of the embeddings Hn

k ⊂ H). Under these identification, one has the embedding H ⊂ (Hn
k )

∗

for all n ∈ N with
‖u‖(Hn

k )
∗ ≤ ‖u‖H ∀n ∈ N.

We will also denote (Hn
k )

∗ by H−n
k and think of it as a space where we “miss” n derivatives to be in

L2. Thus, (Hn
k )n∈Z is a Hilbert scale suited to measure the “regularity”, or “number of derivatives”,

of a function.
. . . ⊂ H−2

k ⊂ H−1
k ⊂ H ⊂ H1

k ⊂ H2
k ⊂ . . .

less regular ←→ more regular

12



Furthermore, we will use the notation

〈L, u〉 := L(u) and 〈u, L〉 := 〈L, u〉 ∀(L, u) ∈ (Hn
k )

∗ ×Hn
k

for any n ∈ N.

Exercise 1.6. (Identification map).
Show that the map I : H → (Hn

k )
∗ defined by

〈Iu, v〉 := 〈u, v〉H ∀(u, v) ∈ H ×Hn
k ,

is injective and satisfies ‖I‖ ≤ 1.
For every k > 0, we consider a sesquilinear form

ak : H1
k ×H1

k → C

and introduce the following assumptions.

Assumption 1.3 (k-uniform Continuity)

The sesquilinear forms ak are k-uniformly bounded, that is, for all k0 > 0, there exists
C0(k0) > 0 such that, for all k ≥ k0,

sup
u,v∈H1

k\{0}

|ak(u, v)|
‖u‖H1

k
‖v‖H1

k

≤ C0(k0). (1.8)

We denote by ‖ak‖, the norm of ak, the quantity that appears in the left-hand side.

Assumption 1.4 (Gårding inequality)

For all k0 > 0, there exist cGa(k0), CGa(k0) > 0 such that the Gårding inequality

Re(ak(u, u)) ≥ CGa(k0)‖u‖2H1
k
− cGa(k0)‖u‖2H

holds for all k ≥ k0 and all u ∈ H1
k.

Assumption 1.5 (Compact injection)

The embedding H1
k ⊂ H is compact, that is, every bounded sequence in H1

k admits a subse-
quence that converges in H.

Assumption 1.6 (Injectivity)

For all k > 0, if u ∈ H1
k satisfies ak(u, v) = 0 for all v ∈ H1

k, then u = 0.

Assumption 1.4 owes its name to Lars Gårding, see [26, Theorem 2.1]. In what follows, we
sometimes omit the dependence in k0 of C0, cGa and CGa from the notation.
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Exercise 1.7. (Compactness of the identification map).
Show that under Assumption 1.5, the identification map I : H → (Hn

k )
∗ from Exercise 1.6 is compact

when n ≥ 1.
Remark 1.2 (Validity of Assumptions (1.3)-(1.6) in practice). In the setting of §1.1, we would choose
H1

k to be the space H1
0 (Ω) endowed with the norm ‖ · ‖H1

k

u 7→
√
‖u‖2L2(Ω) + k−2‖∇u‖2L2(Ω)

as in Exercise 1.4. Then,

1. Assumptions 1.3 and 1.4 are satisfied as shown in Exercise 1.4.

2. Assumption 1.5, i.e., the compactness of the embedding H1
0 (Ω) ⊂ L2(Ω), holds by the Rellich

theorem ([38] in German, see also [1, Theorem 6.3]).

3. Assumption 1.6 is shown via a unique continuation principle, as discussed in [23, Section 4.2].

Remark 1.3 (Concrete version of the scale (Hn
k )n∈N). In the setting of §1.1, the Hn

k norm would be
defined by

‖u‖2Hn
k
:=

∑
|α|≤n

k−|α|‖∂αu‖2L2(Ω),

and the space Hn
k as the adherence of C∞(Ω) in L2(Ω) for this norm, intersected with H1

k.
Given a Hilbert space H, we denote by H∗ the anti-dual of H, i.e., the vector space of continuous

anti-linear forms T : H → C, equipped with the norm

‖T‖H∗ := sup
u∈H\{0}

|T (u)|
‖u‖H

Definition 1.2 (Helmholtz operator P (k))

For all k > 0, the Helmholtz operator P (k) : H1
k → (H1

k)
∗ is defined by

〈P (k)u, v〉 := ak(u, v) ∀u, v ∈ H1
k.

Given f ∈ (H1
k)

∗, the Helmholtz problem is to find u ∈ H1
k such that

P (k)u = f. (1.9)

Observe that for all k > 0, ‖P (k)‖H1
k→(H∗

k)
= ‖ak‖ (with the latter defined in (1.8)). In

particular, P (k) is a (k-uniformly) bounded linear map.

Theorem 1.7 (Well-posedness of the Helmholtz problem)

Suppose that Assumptions (1.3)-(1.6) hold. Then, for all k > 0, the Helmholtz operator
P (k) is an isomorphism.

14



Proof. Let k0 > 0 and let C0, cGa and CGa be as in Assumptions 1.3 and 1.4. Let m > cGA and let
a+k : H1

k ×H1
k → C be the sesquilinear form defined by

a+k (u, v) := 〈(P (k) +mI)u, v〉 = ak(u, v) +m〈u, v〉H , u, v ∈ H1
k

where I is the identification map from Exercise 1.6. By Assumption 1.3,

|a+k (u, v)| ≤ (C0 +m)‖u‖H1
k
‖v‖H1

k

and by Assumption 1.4,
Re(a+k (u, u)) ≥ CGa‖u‖2H1

k
; (1.10)

that is, a+k is bounded and coercive. Thus, by the Lax-Milgram theorem, the variational problem

Find u ∈ H1
k such that for all v ∈ H1

k, a+k (u, v) = 〈f, v〉. (1.11)

admits a unique solution for every f ∈ (H1
k)

∗. By definition of a+k , this means that for any f ∈ (H1
k)

∗,
we can find u such that (P (k) +mI)u = f ; hence, P (k) +mI is surjective. The coercivity (1.10)
also immediately implies that P (k)+mI is injective. Therefore, the bounded linear map P (k)+mI
is bijective, hence an isomorphism by the bounded inverse theorem [41, Corollary 2.12].

Since I is compact (by Exercise 1.7) and P (k) is injective by Assumption 1.6, we deduce that
P (k) is an isomorphism by the Fredholm theorem (Theorem 1.2).

Definition 1.3 (Helmholtz resolvent)

For all k > 0, we define R(k) : (H1
k)

∗ → H1
k the Helmholtz resolvent:

R(k) := P (k)−1 : (H1
k)

∗ → H1
k.

We will denote
ρ(k) := sup

∥f∥H≤1

‖R(k)f‖H.

Let R(k)∗ be the adjoint of R(k). Identifying H1
k with its bidual (this is possible since H1

k is a
Hilbert space, and in particular, reflexive), R(k)∗ maps (H1

k)
∗ to H1

k and satisfies〈
R(k)u, v

〉
=

〈
u,R(k)∗v

〉
∀u, v ∈ (H1

k)
∗. (1.12)

Exercise 1.8. (Lower bound on ρ(k)).
Let Ω ⊂ Rd be a non-empty open set. Suppose that there is a subset U ⊂ Ω such that for all k > 0,
C∞

c (U) ⊂ H1
k and that for u, v ∈ C∞

c (U), ak(·, ·) is given by

ak(u, v) =

∫
U

(k−2∇u · ∇v − uv) dx .

1. Show that for any u ∈ C∞
c (U), P (k)u = −k−2∆u− u.
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2. Let
RU := sup{R > 0 | U contains a ball of radius R}.

Show that there exists Cd > 0 depending only on the dimension d such that for all k > 0,
there exists u(k) ∈ C∞

c (U) satisfying

‖P (k)u(k)‖L2(Ω) ≤
Cd

〈kRU 〉
‖u(k)‖L2(Ω)

where 〈·〉 is the “Japanese bracket”, defined by 〈X〉 := (1 + ‖X‖2)1/2.

3. Deduce that ρ(k) ≥ ⟨kRU ⟩
Cd

.

Exercise 1.9. (Norm of R(k) from (H1
k)

∗ to H1
k).

Under assumptions (1.3)-(1.6). Show that for all k0 > 0, there exists C > 0 such that for all k ≥ k0,

‖R(k)‖(H1
k)

∗→H1
k
≤ C(1 + ρ(k)).

Hint: use the Gårding inequality. As a first step, show that ‖R(k)‖H→H1
k
≤ C(1 + ρ(k)).

Remark 1.4. Exercise 1.8 shows a first example of the deep relationship that exists between ρ(k)
and the geometry of the propagation domain. We will present this aspect in more details in Chapter
3.

1.3 Galerkin approximation
Let f ∈ (H1

k)
∗ and let u ∈ H1

k be the unique solution of the Helmholtz problem P (k)u = f ; observe
that by definition of P (k), u can be equivalently defined as the unique solution of the variational
problem

Find u ∈ H1
k such that ak(u, v) = 〈f, v〉 ∀v ∈ H1

k.

The basic principle of the Galerkin approximation12 is to solve the same variational problem, but
in a finite-dimensional subspace.

Definition 1.4 (Galerkin approximation)

Let k > 0, let u ∈ H1
k. Given a (usually, finite-dimensional) subspace Vh ⊂ H1

k, we say that
uh is a Galerkin approximation of u in Vh if it is a solution of the variational problem

Find uh ∈ Vh such that ak(uh, vh) = 〈f, vh〉 ∀vh ∈ Vh (1.13)

where f := P (k)u.

Let us make a few comments about this definition:
12for Boris G. Galerkin, who proposed this method in 1915 in a paper related to the equations of elasticity [21]
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1. If uh is a Galerkin approximation of u, then the Galerkin error u−uh satisfies the fundamental
property

ak(u− uh, vh) =
〈
P (k)(u− uh), vh

〉
= 0, ∀vh ∈ Vh ; (1.14)

this is known as Galerkin orthogonality. In fact, (1.14) can be used as an equivalent
definition of a Galerkin approximation of u.

2. The Galerkin problem (1.13) can be solved in practice as follows: introduce a basis {ϕ1, . . . , ϕN}
of Vh, and let A ∈ CN×N and F ∈ CN be defined by

Aij := ak(ϕj , ϕi) , Fi := 〈f, ϕi〉, 1 ≤ i, j ≤ N.

Then, if a solution of (1.13) uh exists, by linearity, the vector Uh of its coefficients in the basis
{ϕi}1≤i≤N satisfies the linear system of equations

AUh = F.

Typically, the linear system coefficients Aij and Fi are computed efficiently to high precision
via numerical quadrature methods. If the linear system is non-singular, its unique solution
A−1F can also be obtained by standard algorithms (in practice, this step is the main compu-
tational bottleneck when k becomes large, especially because the linear system becomes very
large and sign-indefinite. We won’t develop this here).

Exercise 1.10. (Uniqueness implies existence).
Show that the following assertions are equivalent:

(i) The only Galerkin approximation of u = 0 is uh = 0.

(ii) Any u ∈ H1
k admits a unique Galerkin approximation uh in Vh.

Hint: use that Vh is finite-dimensional.

1.4 Why should the Galerkin error be small?
A Galerkin approximation may or may not exist, and is not necessarily unique. It is also not clear
at first glance what makes it a good candidate to approximate u. A simple result in this direction is
Céa’s lemma [15]. Its proof shows in its simplest form one of the fundamental mechanisms allowing
to exploit Galerkin orthogonality to obtain a bound on the Galerkin error.

Lemma 1.8 (Céa’s lemma)

Suppose that the sesquilinear form ak satisfies

γ(k) := inf
u∈H1

k

|ak(u, u))|
‖u‖2H1

k

> 0. (1.15)
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Then, any u ∈ H1
k admits a unique Galerkin approximation uh, and it satisfies the estimate

‖u− uh‖H1
k
≤ ‖ak‖
γ(k)

inf
vh∈Vh

‖u− vh‖H1
k
, (1.16)

where ‖ak‖ is as in (1.8).

Proof. It suffices to show that if a Galerkin approximation of u exists, then it satisfies the estimates
(1.16); indeed, applied to u = 0, this estimate implies uh = 0, and existence and uniqueness for all
u ∈ H1

k then follow from Exercise 1.10.
If a Galerkin approximation exists, then by Galerkin orthogonality (1.14),

ak(u− uh, u− uh) = ak(u− uh, u− vh) + ak(u− uh,
∈Vh︷ ︸︸ ︷

vh − uh)︸ ︷︷ ︸
=0

.

Thus, by definition of γ,

|ak(u− uh, u− vh)| = |ak(u− uh, u− uh)| ≥ γ‖u− uh‖2H1
k
. (1.17)

On the other hand, by definition of ‖ak‖,

|ak(u− uh, u− vh)| ≤ ‖ak‖‖u− uh‖H1
k
‖u− vh‖H1

k
. (1.18)

The combination of eqs. (1.17) and (1.18) implies

‖u− uh‖H1
k
≤ γ

‖ak‖
‖u− vh‖H1

k
,

and the estimate (1.16) follows since vh ∈ Vh was arbitrary.

Remark 1.5. 1. The estimate (1.16) implies that the ratio ‖u − uh‖H1
k
/ infvh∈Vh

‖u − vh‖H1
k

is
bounded by a constant independent of the space Vh (but which may depend on k). This very
strong property is known as “quasi-optimality”: it guarantees that if Vh contains a good
approximation of u, the Galerkin method will find it (up to a constant). In practice,
one can systematically ensure that Vh contains such a good approximation by defining Vh as
a space of piecewise polynomial functions on a sufficiently fine grid of Ω (see §2.1 below).

2. By assumption 1.3, ‖ak‖ is k-uniformly bounded. Hence, if (1.15) holds where γ(k) is k-
uniformly bounded as well, then (1.16) in fact gives a k-uniform bound on the above ratio.
This is known as k-uniform quasi-optimality. It is a key property, as it guarantees that
the departure from optimality of the Galerkin approximation will not explode as k →∞ (i.e.,
at high-frequency).

The main drawback of Céa’s lemma is the assumption (1.15): it is not satisfied for large k by
typical Helmholtz problems (see Exercise 1.11). Nevertheless, it holds “up to a lower order term”
since the Gårding inequality (Assumption 1.4) gives

|ak(u, u)| ≥ cGA‖u‖2H1
k
− CGA‖u‖2H
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and the H norm is “weaker” than the H1
k norm. The main result of this section, due to Schatz [43],

exploits this fact to obtain a sufficient condition for k-uniform quasi-optimality to hold. For this,
we follow [42] by introducing the following key quantity. Recall the definition of R(k)∗ from (1.12).

Definition 1.5 (Adjoint approximability constant)

For any k > 0, the adjoint approximability constant η(k, Vh) is defined by

η(k, Vh) := ‖(Id−Πh)R(k)
∗‖H→H1

k

where Πh : H1
k → H1

k is the H1
k-orthogonal projection onto Vh.

In words, the adjoint approximability measures the ability of the space Vh to approximate in
the H1

k norm the solutions u′ of the adjoint Helmholtz problem

P (k)∗u′ = f ′

with data f ′ of unit H-norm. The size of η(k, Vh) is thus determined by the balance between (i)
the approximation power of the space Vh (how “fine” the space Vh is) and (ii) the growth of the
adjoint resolvent R(k)∗.

Theorem 1.9 (The Schatz argument)

Suppose that Assumptions (1.3)-(1.6) hold and let k0 > 0. There exists η0 > 0 such that for
any k ≥ k0, if the approximation space Vh satisfies

η(k, Vh) ≤ η0, (1.19)

then every function u ∈ H1
k admits a unique Galerkin approximation uh in Vh. Moreover,

the error u− uh satisfies the estimates

‖u− uh‖H ≤ η(k, Vh)‖ak‖ · ‖u− uh‖H1
k
, (1.20)

‖u− uh‖H1
k
≤ 2
‖ak‖
cGa

inf
vh∈Vh

‖u− vh‖H1
k
. (1.21)

Remark 1.6. The estimate (1.21) implies a k-uniform quasi-optimality, but with only if η(k, Vh) is
sufficiently small. We will see that this can be a severe price to pay for large k. Namely, when
Vh is chosen as a space of piecewise polynomials on a mesh of Ω, the condition η(k, Vh) ≤ η0 can
require the mesh to be drastically finer than the minimum requirement to make

inf
vh∈Vh

‖u− vh‖H1
k
≤ ε ,

for some desired error level ε. The reason for this is that there can exist a H-normalized function
f ′ for which the solution of the adjoint problem P (k)∗u′ = f ′ is not well approximated by Vh, i.e.,
infvh∈Vh

‖u′ − vh‖ � 1, even though infvh∈Vh
‖u− vh‖ ≤ ε.
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Proof. As in the proof of Céa’s lemma, it suffices to show that if a Galerkin approximation of u
exists, then it satisfies the estimates (1.20) and (1.21).

Hence, suppose that uh is a Galerkin approximation of u. Then
‖u− uh‖2H =

〈
R(k)P (k)(u− uh), u− uh

〉
=

〈
P (k)(u− uh), R(k)∗(u− uh)

〉
=

〈
P (k)(u− uh), R(k)∗(u− uh)− vh

〉
where we used duality and the Galerkin orthogonality to subtract an arbitrary element vh ∈ Vh in
the right argument of the duality pairing. Since vh ∈ Vh is arbitrary, this gives

‖u− uh‖2H ≤ ‖ak‖‖u− uh‖H1
k

inf
vh∈Vh

‖R∗
k(u− uh)− vh‖H1

k︸ ︷︷ ︸
=∥(Id−Πh)R(k)∗(u−uh)∥H1

k

,

(recalling that ‖P (k)‖H1
k→(H1

k)
∗ = ‖ak‖) and the estimate (1.20) follows by definition of η(k, Vh).

In turn, to show (1.21), we combine the previous estimate with the Gårding inequality (As-
sumption 1.4), the k-uniform continuity (Assumption 1.3), and (1.19):

‖u− uh‖2H1
k
≤ c−1

GA

(
ak(u− uh, u− uh) + CGa‖u− uh‖2H

)
≤ c−1

GA

(
ak(u− uh, u− uh) + CGaη(k, Vh)

2‖ak‖2‖u− uh‖2H1
k

)
≤ c−1

GA

(
ak(u− uh, u− uh) + CGaη

2
0C

2
0‖u− uh‖2H1

k

)
Substracting the last term and using Galerkin orthogonality,

‖u− uh‖2Hk
1

(
1− η20C2

0

CGa

cGa

)
≤ c−1

Gaak(u− uh, u− uh)

= c−1
Gaak(u− uh, u− vh)

≤ ‖ak‖
cGa
‖u− uh‖H1

k
‖u− vh‖H1

k
.

We obtain (1.21) by choosing η0 := 1
C0

√
cGa

2CGa
and taking the infimum for vh ∈ Vh.

The previous result shows that, for analysing the Galerkin method, it is necessary to understand
the adjoint approximability constant η(k, Vh), as well as the best approximation error infvh∈Vh

‖u−
vh‖. These quantities depend on the choice of Vh, and we now have to be more specific about it in
order to continue the theory. This is the object of the next chapter.

Exercise 1.11. (Indefiniteness of ak).
Let Ω ⊂ Rd be a non-empty open set. Suppose that C∞

c (Ω) ⊂ H1
k and that for u, v ∈ C∞

c (Ω), ak is
given by

ak(u, v) =

∫
Ω

(k−2∇u · ∇v − uv) dx ,

Show that for k large enough, there exists u1, u2 ∈ C∞
c (Ω) such that

ak(u1, u1) < 0 < ak(u2, u2).

Deduce that the quantity η(k) defined in (1.15) vanishes for k large enough.
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Chapter 2

The finite-element method and the
pollution effect

We will restrict our attention to a specific Galerkin method, namely, the finite-element method.1
This is when the approximation spaces Vh are built as piecewise polynomial functions on a “mesh”
of the computational domain.

The goal of this chapter is to give sharp bounds on the error u − uh when the finite-element
method is applied to a Helmholtz problem in terms of the wavenumber k, the mesh-size h and the
polynomial degree p. The main result is Theorem 2.7 below. A key step will be to estimate the
behavior of the adjoint approximability constant η(k, Vh) of Definition 1.5 for piecewise polynomial
spaces. It is already apparent on the definition

η(k, Vh) = ‖(Id−Πh)R(k)
∗‖H→H1

k

that this involves two phenomena:

(i) the best polynomial approximation error is smaller for more regular functions, and

(ii) the solution of a Helmholtz problem (more generally, of an elliptic PDE) is more regular than
the data.

We will see that the finite-element method is plagued by the so-called “pollution effect”: roughly,
this means that, perhaps surprisingly, a mesh-size of order h ≲ k−1 is generally insufficient to obtain
an accurate approximation of a Helmholtz problem with wavenumber k.

2.1 Finite-element spaces
The finite-element method is a special case of a Galerkin method, where the approximation space
Vh is chosen as a special space involving polynomials. More precisely, one starts by constructing a

1developed around the 1960s, building on early ideas from Courant [14] (1943) among others. Its development
was especially stimulated by the possibilities offered by the appearance of computers. In France, its mathematical
analysis for the approximation of elliptic PDEs was pioneered by P. Ciarlet, see [12]. A standard modern reference
is [6].
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mesh Ωh of the computational domain Ω, i.e., a partition of Ω into a finite set of (possibly curved)
simplices (or sometimes other shapes). As an illustration, a simple mesh of a planar domain Ω is
represented in Figure 2.1. The simplices are called elements of Ωh. It is customary to denote

h := max
K∈Ωh

hK , hK := diameter(K)

the mesh-width of Ωh. Since h determines in a large part the accuracy of the approximation, the
subscript h is traditionally used to indicate an object related to the mesh (uh, Vh, Ωh, etc.).

A finite-element scheme V is an assignment, to any mesh Ωh, of a finite-dimensional subspace
Vh = V (Ωh) of H1. For example, the standard Lagrange finite-element of order p is the scheme V p

defined by

V p(Ωh) :=
{
uh ∈ H1 | (uh)|K is a polynomial of degree p, ∀K ∈ Ωh

}
.

There are many other popular finite-element schemes, and we will not review them here.

Figure 2.1: A triangular mesh Ωh of a planar domain Ω (delimited by the red borders).

In practice, the ability of a finite element space to approximate functions does not just depend
on h and p, but also on the “quality” of the mesh. A mesh of good quality is one where the elements
are not too distorted/elongated. This is described by the so-called shape-regularity constant

γ(Ωh) := max
K∈Ωh

hK
ρK

where, for every K, ρK is the in-radius of K (i.e., the radius of the inscribed ball). There are efficient
methods to obtain arbitrarily refined meshes of a given computational domain, with uniformly
bounded shape-regularity constants.

We now state the general approximation property satisfied by standard finite-element schemes.
Recall the scale of spaces (Hn

k )n∈N from Definition 1.1. It is not our aim here to present the proof
of these results: we take them as requirements for admissible finite-element schemes.
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Definition 2.1 (Finite-element scheme of order p)

Given p ∈ N, we say that the finite-element scheme V is of order p if it has the following
approximation property (see [6, Theorem 4.4.20]): for every k0, γ0 > 0, there exists
C > 0 such that the estimate

inf
vh∈V (Ωh)

‖u− vh‖Hm
k
≤ C(hk)ℓ−m‖u‖Hℓ

k
(2.1)

holds for any ℓ ∈ {1, . . . , p + 1}, m ∈ {0, . . . , ℓ}, u ∈ Hℓ
k, and any mesh Ωh satisfying

γ(Ωh) ≤ γ0 of meshwidth h.

2.2 Elliptic regularity
We now formulate our fifth key assumption on the Helmholtz problems under consideration (again
following [24]). Let

P(k) :=
P (k) + P (k)∗

2
: H1

k → (H1
k)

∗

where P (k)∗ : H1
k → (H1

k)
∗ is the adjoint of P (k).

Assumption 2.1 (Elliptic regularity for P(k) and P (k)∗)

For every k0 > 0 and n ∈ N \ {0}, there is a constant Cell > 0 such that the following
property holds for all k ≥ k0:

∀u ∈ H1
k , Qu ∈ Hn

k =⇒
(
u ∈ Hn+2

k and ‖u‖Hn+2
k
≤ Cell

(
‖u‖H1

k
+ ‖Qu‖Hn

k

))
,

where Q is either one of the operators P(k) or P (k)∗.

Remark 2.1 (Elliptic regularity in concrete settings). Elliptic regularity is a general property of
elliptic second-order partial differential equations. In the setting of §1.1, with the spaces (Hn

k )n∈N
defined as in Remark 1.3, the elliptic regularity holds if the coefficients ρ̃, ñ and the boundary ∂Ω
are smooth, see [33, Theorem 4.18 (i)] (note that the requirement of the boundary values required
by this theorem – i.e., that γu ∈ Hr+ 3

2 (∂Ω) – is fulfilled since γu = 0 due to the Dirichlet boundary
condition in H1

k).

Exercise 2.1. (Mapping properties of R(k)∗).
Suppose that Assumptions (1.3)-(1.6) and (2.1) hold. Show that for every n ∈ N and k > 0, R(k)∗
maps Hn

k to Hn+2
k continuously with

∀k0 > 0 , ∃C > 0 : ‖R(k)∗‖Hn
k→Hn+2

k
≤ C(1 + ρ(k)). (2.2)

(Hint: Proceed by induction, using Exercise 1.9 for the initialization).
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Lemma 2.2 (First bound on the adjoint-approximability constant)

Suppose that Assumptions (1.3)-(1.6) and (2.1) hold and let V p be a finite-element scheme
of order p ≥ 1 and let k0, γ0 > 0. Then, there exists C > 0 such that the estimate

η(k, Vh) ≤ C(1 + ρ(k))hk (2.3)

holds for any k > k0, Vh = V p(Ωh) with Ωh any mesh satisfying γ(Ωh) ≤ γ0.

Proof. Let f ∈ H. Applying the approximation property (2.1) to R(k)∗f , we find

‖(Id−Πh)R(k)
∗f‖H1

k
≤ C(hk)2−1‖R(k)∗f‖H2

k

and the conclusion follows by using the estimate (2.2) with n = 0.

It follows from Lemma 2.2 and the Schatz argument (Theorem 1.9) that a Galerkin approxi-
mation exists and is k-uniformly quasi-optimal provided that (1 + ρ(k))hk is sufficiently small. In
what follows, we show the following stronger bound:

Lemma 2.3 (Sharp bound on the adjoint-approximability constant)

Under the same assumptions as Lemma 2.2, there exists C > 0 such that the estimate

η(k, Vh) ≤ C ((hk) + ρ(k)(hk)p) (2.4)

holds for all k ≥ k0 and Vh = V p(Ωh) with Ωh any mesh satisfying γ(Ωh) ≤ γ0.

This immediately implies the following result

Corollary 2.4 (Error bound in the “asymptotic regime”)

Suppose that Assumptions (1.3)-(1.6) and (2.1) hold, let V p be finite-element scheme of
order p ≥ 1 and let k0, γ0 > 0. There exists ε > 0 and C > 0 such that for all k ≥ k0, if Ωh

is a mesh of Ω satisfying γ(Ωh) ≤ γ0 and

(1 + ρ(k))(hk)p ≤ ε, (2.5)

then every u ∈ H1
k admits a unique Galerkin approximation uh in V p(Ωh) which satisfies

‖u− uh‖H1
k
≤ C inf

vh∈V p(Ωh)
‖u− vh‖H1

k
.

Remark 2.2 (Sharpness of Corollary 2.4). It is known in practice that Corollary 2.4 is sharp, and
we illustrate this with Numerical experiments in Figure 2.2. This means that to ensure k-uniform
quasi-optimality, it is not sufficient to take h ≲ k−1: the mesh needs to be more refined than
expected, especially when ρ(k) is large. Only when the stronger condition (2.5) is satisfied, do we
enter the asymptotic regime, namely, the regime in which the finite-element approximation is
essentially the best approximation.
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The fact that the condition h ≲ k−1 is not enough to guarantee k-uniform quasi-optimality is
known as the pollution effect. A larger polynomial order mitigates this effect, since Corollary
2.4 ensures that it is sufficient to choose h ∼ k−1ρ(k)−

1
p to obtain a k-uniform bound on the ratio

(Galerkin error)/(Best approximation error). In fact, it can be shown that one may completely get
rid of the pollution effect by choosing not just h, but also p as a function of k, with p ≳ log k and
hk/p ≲ 1 [34].2

Figure 2.2: Numerical experiments for the resolution of a Helmholtz problem (−k−2∆−1)u = f in Rd with
the Sommerfeld condition (1.1) (truncated to a bounded domain via PML truncation), where the exact
solution is u = χ(x)eikx1 , χ = e−σ∥x2∥ with σ = 10. For this problem, one can show that ck ≤ ρ(k) ≤ Ck.
The problem is solved numerically for a sequence of wavenumbers k, with a finite-element scheme of order
p = 1, 2 or 3, either with a mesh-size hk = Cst (i.e., h ∼ k−1) or (hk)pρ(k) = Cst (i.e., h ∼ k−(p+1)/p).
In each case, we plot the quasi-optimality (“Q-O”) ratio, defined as (Galerkin error)/(Best approximation
error). The fact that the blue curves are increasing is a manifestation of the pollution effect, and the fact
that the orange curves stay bounded is predicted by Corollary 2.4. Missing data on the orange curves is
because of memory limitation.

2Pollution is defined more precisely as the fact that more than O(kd) degrees of freedom are necessary to obtain
k-uniform quasi-optimality, and one can show that for p ≳ log k and hk/p ≲ 1, the number of degrees of freedom is
indeed of that order.
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2.3 Frequency splitting of the resolvent
The main idea for the proof of Lemma 2.3 is the following phenomenon: the behaviour of the
Helmholtz resolvent (and similarly for its adjoint) is only “bad” at low frequencies. But low-
frequency functions (i.e., functions that are slowly varying) are very well-approximated by piecewise
polynomials.

The reason why the Helmholtz resolvent is well-behaved on high-frequency functions can be
understood informally on the following example. Consider the Helmholtz equation in free space

(−k−2∆− 1)u = f in Rd,

with the Sommerfeld radiation condition (1.1). Via the Fourier transform, the resolvent operator
(−k−2∆ − 1)−1 can essentially be seen as the multiplication by 1/(k−2|ξ|2 − 1) in Fourier space.
In particular, the “troubles”, i.e., the only region of Fourier space where the resolvent can be large,
are restricted to the set {k−1|ξ| ≲ 1} i.e., the low-frequencies.

In our setting, we will formalize this idea by constructing a “low-frequency cutoff” S(k) (i.e.,
S(k) removes frequencies ≲ k) such that the perturbation

P ♯(k) := P (k) + S(k)

has a well-behaved inverse R♯(k) := [P (k) + S(k)]−1. We can then split the resolvent as

R(k) = R♯(k) +R(k)[P ♯(k)− P (k)]R♯(k)

= R♯(k) +R(k)S(k)R♯(k). (2.6)

The way to think about this splitting is that R♯(k) is the “high-frequency part of R(k)” which
is well-behaved, and the second term R(k)S(k)R♯(k) has the “bad behavior”, but restricted to
low-frequencies thanks to S(k).

We now give a precise statement of the properties of the operators S(k) and P ♯(k), but postpone
their construction to a later stage.

Proposition 2.5 (Operators S(k) and P ♯(k))

Suppose that Assumptions (1.3)-(1.6) and (2.1) hold and let k0 > 0. Then, for every k ≥ k0,
there exists a bounded self-adjoint operator

S(k) : H → H

with the following properties

1. S(k) is smoothing, in the sense that for every k ≥ k0 and n ∈ N, S(k) maps (Hn
k )

∗ to
Hn

k with
sup
k≥k0

‖S(k)‖(Hn
k )

∗→Hn
k
<∞.

2. The operator P ♯(k) := P (k) + S(k) is k-uniformly coercive: there exists c♯ > 0 such
that for all k ≥ k0,

Re〈P ♯(k)u, u〉 ≥ c♯‖u‖2H1
k
.
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3. The resolvent operator R♯(k) := P ♯(k)−1 gains two derivatives k-uniformly, in the
sense that for all n ∈ N, R♯(k) maps Hn

k to Hn+2
k and

sup
k≥k0

‖R♯(k)‖Hn
k→Hn+2

k
<∞.

We obtain a better bound for η(k, Vh) as an immediate consequence.

Corollary 2.6 (Bound for η(k, Vh) via frequency splitting)

Under the same assumptions as Lemma 2.2, the exists C > 0 such that the estimate

η(k, Vh) ≤ C ((hk) + ρ(k)(hk)p) (2.7)

holds for all k ≥ k0 and Vh = V p(Ωh) with Ωh any mesh satisfying γ(Ωh) ≤ γ0.

Proof. Using the splitting (2.6) (taking the adjoint) and the definition of η(k, Vh), and applying the
triangle inequality

η(k, Vh) ≤ ‖(Id−Πh)R
♯(k)∗‖H→H1

k
+ ‖(Id−Πh)R

♯(k)∗S(k)R(k)∗‖H→H1
k
.

Thus by the approximation property (2.1),

η(k, Vh) ≤ C(hk)‖R♯(k)‖H→H2
k
+ C(hk)p‖R♯(k)S(k)R(k)‖H→Hp+1

k
.

By Proposition 2.5, we have ‖R♯(k)‖H→H2
k
≤ C and

‖R♯(k)S(k)R(k)‖H→Hp+1
k
≤ ‖R♯(k)‖Hp−1

k →Hp+1
k
‖S(k)‖(Hp−1

k )∗→Hp−1
k
‖Id‖H→(Hp−1

k )∗‖R(k)‖H→H

≤ Cρ(k)

by the definition of ρ(k) and the continuous embedding H ⊂ (Hp−1
k )∗ (Exercise 1.6).

2.4 Pre-asymptotic regime: the elliptic projection argument
In this section, we show the main result of this chapter, which improves the result of Corollary 2.4:

Theorem 2.7 (Error bound in the “pre-asymptotic regime”)

Suppose that assumptions (1.3)-(1.6) and (2.1) hold, let V p be a finite-element scheme of
order p ≥ 1, and let k0, γ0 > 0. There exits ε > 0 and C > 0 such that for all k ≥ k0, if Ωh

is a mesh of Ω satisfying γ(Ωh) ≤ γ0 and

(1 + ρ(k))(hk)2p ≤ ε ,
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then every u ∈ H1
k admits a unique Galerkin approximation uh in V p(Ωh), and

‖u− uh‖H1
k
≤ C(1 + ρ(k)(hk)p) inf

vh∈V p(Ωh)
‖u− vh‖H1

k
. (2.8)

Remark 2.3 (Comments on 2.4).

(i) This result is part of Theorem 1.1 from [24], and we refer to §1.2 of that reference for a
discussion of its history, which started in dimension d = 1 and for p = 1, for “non-trapping
problems” (this corresponds to cases where ρ(k) ≲ k) in the seminal works by Ihlenburg and
Babuška [28, 29].

(ii) In the asymptotic regime (that is, when the condition (2.5) holds), the bound (2.8) does not
give any new information compared to Corollary 2.4, and the criterion for obtaining k-uniform
quasi-optimality remains the same. However, Theorem 2.7 gives new information in the so-
called “pre-asymptotic regime”, that is, when ρ(k)(hk)p is not small, but ρ(k)(hk)2p is. In
particular, using the approximation property (2.1), we see that for u ∈ Hp+1

k ,

‖u− uh‖H1
k
≤ C(1 + ρ(k)(hk)p)(hk)p‖u‖Hp+1

k

and thus, under the assumptions of Theorem 2.7, we obtain a k-uniform bound on the relative
error

‖u− uh‖H1
k

‖u‖Hp+1
k

.

(iii) Even if one only cares about the asymptotic regime k-uniform quasi-optimality, the proof of
Theorem 2.7 introduces a key argument (the “elliptic projection argument”) that will be our
starting point in the next chapter.

Definition 2.2 (Elliptic projection Π♯
h)

Let Assumptions (1.3)-(1.6) and (2.1) hold and let k0 > 0. For any k ≥ k0, let Vh ⊂ H1
k. The

elliptic projection onto Vh is the unique bounded linear operator Π♯
h : H1

k → Vh satisfying

〈P ♯(k)uh, (Id−Π♯
h)v〉 = 0 ∀(uh, v) ∈ Vh ×H1

k,

where P ♯(k) is as in Proposition 2.5.

Due to the k-uniform coercivity of P ♯(k), the operator Π♯
h essentially computes the best approx-

imation in Vh with respect to the H1
k norm. This is the object of Exercise 2.2 below.

Exercise 2.2. (Aubin-Nitsche trick for Π♯
h).

1. Show that the operator Π♯
h is well-defined and that for every k0 > 0, there exists C > 0 such

that
‖(Id−Π♯

h)u‖H1
k
≤ C inf

vh∈Vh

‖u− vh‖H1
k
.

(Hint: use Céa’s lemma).
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2. Using the definition of Π♯
h, show that for any ξ ∈ H1

k,

|〈ξ, (Id−Π♯
h)u〉| ≤ ‖(Id−Π♯

h)u‖H1
k

inf
wh∈Vh

‖R♯ξ − wh‖H1
k
.

(Hint: start as in the Schatz argument)

3. Using the two previous questions, deduce that, under the assumptions of Theorem 2.7,

‖(Id−Π♯
h)u‖(Hp−1

k )∗ ≤ C(hk)
p inf
vh∈Vh

‖u− vh‖H1
k
.

where C does only depends on k0, γ0 and V p. This method is sometimes called the “Aubin-
Nitsche trick”, see [2, 37].

Proof of Theorem 2.7. We first show that if (1 + ρ(k))(hk)2p is sufficiently small, then

‖u− uh‖(Hp−1
k )∗ ≤ C(1 + ρ(k))(hk)p inf

vh∈V p(Ωh)
‖u− vh‖H1

k
. (2.9)

For this, we fix ξ ∈ Hp−1
k and compute (starting as in the Schatz argument)

〈u− uh, ξ〉 = 〈R(k)P (k)(u− uh), ξ〉 (def. of R(k))
= 〈P (k)(u− uh), R(k)∗ξ〉 (duality)
= 〈P (k)(u− uh), (Id−Π♯

h)R(k)
∗ξ〉 (Galerkin orthogonality (1.14))

= 〈P ♯(k)(u− uh), (Id−Π♯
h)R(k)

∗ξ〉

− 〈S(k)(u− uh), (Id−Π♯
h)R(k)

∗ξ〉 (def. of S and P ♯)
= 〈P ♯(k)(u− vh), (Id−Π♯

h)R(k)
∗ξ〉

− 〈S(k)(u− uh), (Id−Π♯
h)R(k)

∗ξ〉 (def. of Π♯
h)

where vh is an arbitrary element of V p(Ωh) (the fact that we have gotten a vh in the last step is
the main gain from using the elliptic projection) Using the boundedness of P ♯(k) : H1

k → (H1
k)

∗

and S(k) : (Hp−1
k )∗ → Hp−1

k (from Proposition 2.9), we deduce

|〈u− uh, ξ〉| ≤ C‖u− vh‖H1
k
‖(Id−Π♯

h)R(k)
∗ξ‖H1

k

+ C‖u− uh‖(Hp−1
k )∗‖(Id−Π♯

k)R(k)
∗ξ‖(Hp−1

k )∗ .

Applying the properties of Π♯
h from Exercise 2.2, it follows that

|〈u− uh, ξ〉| ≤ C‖u− vh‖H1
k
‖(Id−Πh)R(k)

∗ξ‖H1
k

+ C(hk)p‖u− uh‖(Hp−1
k )∗‖(Id−Πh)R(k)

∗ξ‖H1
k
.

where Πh : H1
k → H1

k is the H1
k-orthogonal projection onto V p(Ωh). By the approximation property

(2.1) and the norm estimates for R(k)∗ from Exercise 1.9 we obtain

|〈u− uh, ξ〉| ≤ C(hk)p‖u− vh‖H1
k
‖R(k)∗ξ‖Hp+1

k
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+ C(hk)2p‖u− uh‖(Hp−1
k )∗‖R(k)

∗ξ‖Hp+1
k

.

≤ C(1 + ρ(k))(hk)p
(
‖u− vh‖H1

k
+ (hk)p‖u− uh‖(Hp−1

k )∗

)
‖ξ‖Hp−1

k
.

By taking the supremum over ξ ∈ Hp−1
k \ {0}, we deduce that

‖u− uh‖(Hp−1
k )∗ ≤ C(1 + ρ(k))(hk)p‖u− vh‖H1

k
+ C(1 + ρ(k))(hk)2p‖u− uh‖(Hp−1

k )∗ , (2.10)

from which (2.9) follows since vh was arbitrary.
To obtain the bound (2.8), we now write

‖u− uh‖2H1
k
≤ C|

〈
P ♯(k)(u− uh), (u− uh)

〉
| (coercivity of P ♯)

≤ C|〈P (k)(u− uh), (u− uh)〉|+ C|〈S(k)(u− uh), (u− uh)〉| (def. of P ♯)
≤ C|〈P (k)(u− uh), (u− vh)〉|+ ‖u− uh‖2(Hp−1

k )∗

(Galerkin orth. and mapping properties of S(k))
≤ ‖u− uh‖H1

k
‖u− vh‖H1

k
+ ‖u− uh‖2(Hp−1

k )∗

and the conclusion follows by taking the supremum over vh ∈ V p(Ωh) and using the bound (2.9)
from the previous step.

2.5 Construction of S(k)

We now give the construction of the operator S(k) of Proposition 2.5. We have seen that S(k) can
be viewed as a low-frequency cutoff; hence to define it, we must be more precise about what this
means. The trouble is that we cannot directly use the Fourier transform (since we are not on Rd).
Instead, we will diagonalize the Helmholtz operator – or more precisely, its real part P(k) – and
use the eigenfunctions to play the role of the Fourier basis eix·ξ, and the associated eigenvalues to
play the role of the Fourier variable. This is the object of the next proposition

Proposition 2.8 (Spectral decomposition of P(k))

Suppose that Assumptions (1.3)-(1.6) and (2.1) hold and let k0 > 0. Then there exists
c, C > 0 such that, for every k ≥ k0, there exists a sequence of real numbers

cGa(k0)− CGa(k0) ≤ λ0 ≤ λ1 ≤ . . .

with λj →∞ as j →∞, and there exists a family (uj)n∈N ∈ (H1
k)

N of associated eigenfunc-
tions

P(k)uj = λjuj ,

such that
(i) (uj)j∈N is a Hilbert basis of H,

(ii) ∀u ∈ H , u ∈ H1
k ⇐⇒

∞∑
j=0

(CGa + λj)|〈u, uj〉|2 <∞,
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(iii) ∀u ∈ H1
k , c‖u‖2H1

k
≤

∞∑
j=0

(CGa + λj)|〈u, uj〉|2 ≤ C‖u‖2H1
k
.

Moreover, for any u ∈ H1
k, one has

P(k)u =

∞∑
j=0

λj〈u, uj〉uj (2.11)

with the series converging in (H1
k)

∗.

Exercise 2.3. (Proof of Proposition 2.8).

1. Show that
Re a+k (u, v) :=

〈
(P(k) + CGa)u, v

〉
defines an equivalent inner product on H1

k.

2. Show that there exists a bounded linear operator A(k) : H → H1
k such that, for all f ∈ H,

(Re a+k )(A(k)f, v) = 〈f, v〉

Show that A(k) can be viewed as a compact operator from H to H, which is positive definite
(i.e., 〈A(k)u, u〉 > 0 for every u ∈ H) and satisfies ‖A(k)‖H→H ≤ 1

cGa(k0)
.

3. By the spectral theorem for compact self-adjoint operators applied to A(k), there exists (µj)j∈N
a sequence of positive numbers converging to 0, and (uj)j∈N a Hilbert basis of H such that
A(k)uj = µjuj. Show that uj ∈ H1

k and P(k)uj = λjuj with λj := 1
µj
− CGa.

4. and that (√µjuj)j∈N is an orthonormal family of H1
k for this inner product.

5. Show that (√µjuj)j∈N is a Hilbert basis of H1
k and deduce properties (i) and (ii).

6. Show that for any u, v ∈ H1
k and N ∈ N,〈

N∑
j=0

λj〈u, uj〉, v

〉
≤ C‖u‖H1

k
‖v‖H1

k

where C is independent of N and k, and deduce that the series (2.11) converges in (H1
k)

∗.

7. Conclude.

We may interpret the decomposition (2.11) by viewing P(k) as a “pointwise multiplier” in the
basis (uj)j∈N, with its “symbol” given by λj . This opens the possibility to define other multipliers
by

Xu :=

∞∑
j=0

x̂j〈u, uj〉uj .
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for some sequence of complex numbers (x̂j)
∞
j=0. “Low-frequency cutoffs” will be operators of this

form with only a finite number of non-zero coefficients x̂j . It will be convenient to think of them
as functions of P(k), with x̂j equal to f(λj).

Definition 2.3 (Functions of P)

Let f : R→ C be bounded. For every k > 0 we define f
(
P(k)

)
: H → H by

f
(
P(k)

)
u :=

∞∑
j=0

f(λj)〈u, uj〉uj

where λj and uj are as in Proposition 2.8.

We will often omit the wavenumber k and simply write ψ(P).

Exercise 2.4. (Elementary properties of f(P)).

1. Show that the set of finite linear combinations of the functions uj is dense in H.

2. Deduce that for all k > 0,
‖f(P)‖H→H ≤ sup

x∈R
|f(x)|

3. Show that for f bounded, f(P)∗ = f(P).

4. Show that for all k ≥ k0,

‖f(P)‖H−1
k →H + ‖f(P)‖H→H1

k
≤ sup

x∈[cGa−CGa,∞)

|(x+ CGa)
1/2f(x)| .

5. Show that for rz(x) := (x− z)−1, we have rz(P) = (P(k)− z)−1 on H, and deduce from the
previous questions that

‖(P(k)− z)−1‖H→H ≤
1

|=(z)|
.

‖(P(k)− z)−1‖H−1
k →H1

k
≤ C 〈z〉
|=(z)|

where C only depends on k0.

Bounds on the norms of f(P) in higher norms can be obtained using the elliptic regularity
assumption. This is the object of the next proposition.

Proposition 2.9 (Mapping properties of ψ(P))

For all real-valued ψ ∈ C∞
c (R), the operator ψ(P) is a bounded self-adjoint operator on H.

It maps H−n
k to Hn

k for any n ∈ N, and

∀n ∈ N , ∀k0 > 0 , sup
k≥k0

‖ψ(P)‖H−n
k →Hn

k
<∞.
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Proof. 1. By Exercise 2.4, for any compactly supported real-valued function ψ, the operator
ψ(P) is bounded and self-adjoint on H, and maps H to H1

k boundedly. In particular,
Pψ(P) : H → (H1

k)
∗ is well-defined. For all j ∈ N,

Pψ(P)uj = λjψ(λj)uj

and thus by density, Pψ(P) = (xψ)(P). Therefore, we have in fact Pψ(P) : H → H1
k

with k-uniform norm (since x 7→ xψ(x) is again compactly supported).

2. We claim for all n ∈ N and for any ψ ∈ C∞
c (R), ψ(P) maps H to Hn

k with

sup
k≥k0

‖ψ(P)‖H→Hn
k
<∞. (2.12)

This is true for n = 0 and n = 1 by what precedes. Now arguing by induction, suppose it is true
for some given n ≥ 0, and let u ∈ H. Then ψ(P)u ∈ H1

k and Pψ(P)u = (xψ)(P)u ∈ Hn
k ,

and thus ψ(P)u ∈ Hn+2
k by elliptic regularity (Assumption 2.1), with

‖ψ(P)u‖Hn+2
k
≤ Cell(‖ψ(P)u‖H1

k
+ ‖(xψ)(P)u‖Hn

k
) ≤ C‖u‖H

where C does not depend on k.

3. From step 2 and the fact that ψ(P) is self-adjoint, it follows by duality that ψ(P) maps
(Hn

k )
∗ → H with a k-uniformly bounded norm.

4. Finally, let ψ̃ ∈ C∞
c (R) be such that ψ̃ ≡ 1 on suppψ, so that ψ = ψψ̃. Then,

‖ψ(P)‖(Hn
k )

∗→(Hn
k )

= ‖ψ(P)ψ̃(P)‖(Hn
k )

∗→(Hn
k )
≤ ‖ψ♯(P)‖H→Hn

k
‖ψ̃(P)‖(Hn

k )
∗→H ≤ C

where C is independent of k by steps 2 and 3. The result follows by taking ψ = ψ♯.

Using the previous tools, we can now define the operator S(k) of Proposition 2.5 and establish
its properties.

Definition 2.4 (The operators S(k) and P ♯(k))

For any k0 > 0, there exists ψ♯ ∈ C∞
c (Rd) such that

x+ ψ♯(x) ≥ x+ CGa

2
∀x ∈ [cGa − CGa,+∞).

For any k ≥ k0, we define S(k) : H → H and P ♯(k) : H1
k → (H1

k)
∗ by

S(k) := ψ♯(P) , P ♯(k) := P (k) + S(k).

The mapping properties of S(k) stated in Proposition 2.5 follow immediately from Proposition
2.9.

To obtain those of P ♯(k), the idea is that (at least informally for now), the “symbol” of the
operator Re(P ♯(k)) is λ + ψ♯(λ). Hence, in view of the norm equivalence of Proposition 2.8 (iii),
the definition of ψ♯ ensures that it is coercive on H1

k. Elliptic regularity can then be used (in a
similar way as in Exercise 2.1) to lift these mapping properties in higher norms.
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Proposition 2.10 (Properties of P ♯(k))

For every k0 > 0, there exists C♯(k0) > 0 such that

Re〈P ♯(k)u, u〉 ≥ C♯(k0)‖u‖2H1
k
.

The operator P ♯(k) : H1
k → (H1

k)
∗ is an isomorphism, and its inverse R♯(k) maps Hn−1

k to
Hn+1

k for all n ∈ Z with

∀k0, sup
k≥k0

‖R♯(k)‖Hn−1
k →Hn+1

k
<∞.

Proof. 1. Let (uj)j∈N and (λj)j∈N be as in Proposition 2.8. Let

u =

+∞∑
j=0

αjuj .

where (αj)j∈N has finitely many coefficients. By definition of ψ♯,

Re〈P ♯(k)u, u〉 = 〈(P + ψ♯(P))u, u〉

=

+∞∑
j=0

(λj + ψ♯(λj))|αj |2

≥
+∞∑
j=0

1

2
(λj + CGa)|αj |2

≥ c‖u‖2H1
k

for some c > 0 independent of k by Proposition 2.8 (iii). The same follows for any u ∈ H1
k by

density, showing the first claim.

2. By the Lax-Milgram theorem, P ♯ is an isomorphism from (H1
k)

∗ to H1
k. Moreover, for u ∈ Hn

k ,
n ≥ 0, we have P(k)R♯(k)u = (P ♯(k)−S(k))u = u−S(k)u ∈ Hn

k so that, by elliptic regularity,
R♯(k)u ∈ Hn+2

k and

‖R♯(k)u‖Hn+2
k
≤ Cell(‖u‖H1

k
+ ‖u− S(k)‖Hn

k
) ≤ C‖u‖Hn

k

by the mapping properties of S(k) = ψ♯(P) (Proposition 2.9).

3. The previous items show the claimed mapping properties for n ≥ 0, and the ones for n ≤ 0
follow by duality.

At a later stage, we will also need estimates for the resolvent (P(k) − z)−1. We record this
result here since its proof involves the ingredients used in this paragraph. The technique of the
proof is similar to the one used in Proposition 2.10.
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Proposition 2.11 (Mapping properties of (P(k)− z)−1)

For all z ∈ C \ R and for all n ∈ Z, the operator (P(k) − z)−1 maps Hn
k to Hn+2

k and for
every k0 > 0 and n ∈ Z, there exists C > 0 such that the estimate

‖(P(k)− z)−1‖Hn−1
k →Hn+1

k
≤ C 〈z〉

1+⌊n/2⌋

|=(z)|

holds for all k ≥ k0 and z ∈ C \ R.

Proof. The case n = 0 is shown in Exercise 2.4. For n = 1, we have by elliptic regularity

‖(P(k)− z)−1u‖H2
k
≤ C(‖(P(k)− z)−1u‖H + ‖P(k)(P(k)− z)−1‖H)

≤ C
(
‖u‖H + 〈z〉‖(P(k)− z)−1u‖H

)
≤ C 〈z〉
|=(z)|

‖u‖H

by Exercise 2.4. Next, assume that the claimed mapping property holds from Hn−1
k to Hn+1

k for
some n ≥ 0. Then for u ∈ Hn+1

k , by elliptic regularity,

‖(P(k)− z)−1u‖Hn+3
k
≤ C

(
‖(P(k)− z)−1u‖H1

k
+ ‖P(k)(P(k)− z)−1u‖Hn+1

k

)
≤ C

(
〈z〉
|=(z)|

‖u‖H + ‖u‖Hn+1
k

+ |z|‖(P(k)− z)−1u‖Hn+1
k

)
≤ C 〈z〉

2+⌊n
2 ⌋

|=(z)|

= C
〈z〉1+⌊n+2

2 ⌋

|=(z)|
.

By induction, this gives the result when n ≥ 0, and the case n ≤ 0 follows by duality.
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Chapter 3

Non-uniform meshes defined by
billiard trajectories

The analysis of the previous chapter tacitly assumed that the mesh Ωh is quasi-uniform, in the sense
that all elements are of comparable diameter. Indeed, all estimates are formulated in terms of the
global, maximal mesh size h. However, one may consider meshes Ωh with varying elements sizes.
For instance, if we introduce a cover Ω = Ω1 ∪ . . . ∪ ΩN , we may consider meshes Ωh with distinct
local mesh sizes hj in each region Ωj (with some transition in the overlaps). The motivation for
considering non-uniform meshes can be seen from numerical experiments such as the one displayed
in Figure 3.1. A non-uniform mesh which could seem more suited for this computation is shown for
example in Figure 3.2. The following question then arises: how to choose the parameters h1, . . . , hN
with respect to k ? Can the results of the previous chapter be improved for such meshes?

An affirmative answer to this question was given in [4] and the goal of this chapter is to present
it. Roughly speaking, given a covering Ω = Ω1 ∪ . . .∪ΩN into N open sets, the main result of [4] is
a bound of the local Galerkin errors in terms of the local best approximation errors in each region.
A corollary of this result is that, for trapping problems (problems for which the resolvent ρ(k) grows
faster than k) there are meshes which strongly violate the criterion “(hk)pρ(k) sufficiently small”,
but nevertheless achieve k-uniform quasi-optimality. Such meshes can be constructed by taking
into account the properties of billiard trajectories in Ω.

3.1 The Helmholtz resolvent and billiard trajectories
In the previous chapter, we have presented the pollution effect: the fact that the (sharp) sufficient
condition for k-uniform quasi-optimality is (hk)pρ(k) ≲ 1, and not just hk ≲ 1. Clearly, the severity
of the pollution is dictated by the growth of ρ(k), and for concrete Helmholtz problems, this
intimately depends on the geometry of Ω – or more precisely, on the behavior of billiard trajectories,
or rays, in Ω.

Let us discuss this relationship more precisely for a Helmholtz problem of the form
−k−2 div(A(x)∇u)− n(x)u = f on Rd.

∂u

∂r
− iku = o(r−(d−1)/2) when r →∞.

(3.1)
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Figure 3.1: Helmholtz problem with an obstacle consisting of two “mirrors”. Left: data f (real part).
Middle: finite-element solution uh (real part). Right: error |u − uh| (computed using a reference
solution on a finer mesh with larger p). The scales in each plot are different, but what matters is
the relative scale. The error is concentrated between the mirrors, even though the solution is not
particularly large there. Would it be useful to refine more the mesh between the mirrors?

Figure 3.2: A mesh that seemes to be more adapted for computing the solution of the Helmholtz
problem shown in Figure 3.1. Can we prove error estimates taking into account the non-uniform
mesh size?
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where A and n are smooth and bounded functions such that A ≡ I and n ≡ 1 outside of a compact
set (here, Ω = Rd is unbounded, but we will consider the “truncated resolvent” χR(k)χ, see below).
We assume that A(x) ≥ cId and that n(x) ≥ 0. To the Helmholtz operator, we associate the
Hamiltonian

H(q, p) := 〈A(q)p, p〉 − n(q)

(with q the position and p the impulsion) and consider the billiard trajectories, p, q : R→ Rd defined
by the ODE system

q̇ =
∂H

∂p
(q, p) , ṗ = −∂H

∂q
(q, p) , (p(0), q(0)) = (p0, q0) , (3.2)

where the dot denotes the time derivative. These equations are uniquely and globally solvable on
R owing to the smoothness and boundedness of A and n. When A ≡ I and n ≡ 1, they simply
become q̇ = 2p, ṗ = 0, and the solution is thus

q(t) = q0 + 2p0t , p(t) = p0 , t ∈ R,

that is, a straight-line “ray” issued from p0 with constant velocity 2p0. For Helmholtz problems
involving boundaries, these trajectories are defined as above away from boundaries, and continued
via the Snell-Descartes laws when reaching a boundary.1 A reason why rays appear naturally when
k →∞ is presented in Exercise 3.1 below.

Depending on the geometry, it can occur that a billiard trajectory remains “trapped” in a
compact set for all positive and negative times (as illustrated in Figure 3.3 in a case involving a
boundary). We call the cavity, denoted by K, the set of points in Rd such that there is at least
one trapped ray passing through x with H(p0, q0) = 0. If the cavity is not empty, we say that

Figure 3.3: Rays in an elliptic cavity (with reflection by Snell-Descartes’ law at the boundary). The
ray displayed in blue is not trapped forward, whereas the green ray is trapped (in both directions).
The red dot is in the cavity since it has at least a trapped trajectory passing over it.

the Helmholtz problem is trapping, and non-trapping otherwise. Roughly speaking, the growth
1To be precise, one must use the more complicated notion of generalized bicharacteristic flow to account for

“glancing rays” along boundaries, see [27, Section 24.3].
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of the resolvent ρ(k) is dictated by “how many” trajectories are trapped, and how “stable” this
trapping is under perturbations.

Let us state more precisely some known results in this direction. For a fixed χ ∈ C∞
c (Rd), let

ρχ(k) := ‖χR(k)χ‖L2→L2 where R(k) is the solution operator f 7→ u of the Helmholtz problem
(3.1).

1. If the problem is non-trapping, then there exists c, C > 0 such that

k ≲ ρχ(k) ≲ k,

see, e.g., [40, 9], [19, Theorem 4.43]. The hidden constants are related to the longest time for
which a ray remains in the support of χ, see [25].

2. If the problem is trapping, there exists χ ∈ C∞
c (Rd) and C > 0 such that

ρχ(k) ≳ k log(k),

see [5], and this estimate is sharp (the lower bound is achieved in the presence of boundaries,
for instance when the propagation domain is the complement of two convex obstacles).

3. In any case, there exists C > 0 such that

ρχ(k) ≲ eCk

[7, 47] and this estimate is sharp (in the presence of boundaries, the upper bound is achieved
by elliptic cavities like the one in Figure 3.3). However, the polynomial bound

ρχ(k) ≲ k5n/2+2+ε

holds with ε > 0 arbitrarily small, for all wavenumbers k ∈ R+ \ J for a set J of arbitrarily
small Lebesgue measure [31].

A further link between billiard trajectories and the resolvent operator can be seen by considering
‖χ1R(k)χ2‖L2→L2 where χ1 and χ2 are smooth compactly supported functions. This quantity
characterizes how large the solution u can be on suppχ1 if the data f is supported on suppχ2. In
general, i.e., if we don’t specify any conditions on χ1 and χ2, we just have the estimate

‖χ1R(k)χ2‖L2→L2 ≲ ρχ(k) , (3.3)

where χ is compactly supported and equal to 1 in a large ball containing the supports of χ1 and
χ2. Here, we think of ρχ(k) as describing the “strength of the trapping”, with ρ(k) ≲ k for
non-trapping problems and ρ(k) ≲ eCk for strongly trapping problems. But once again, billiard
trajectories provide more informations. In the next statement, we fix a subset J ⊂ R+ such that
ρχ is polynomially bounded on R+ \ J .

1. If suppχ1 and suppχ2 are dynamically isolated (no billiard trajectory starting in suppχ1

attains a neighborhood of suppχ2) and if in addition, suppχ1 is dynamically isolated from
the cavity, then

‖χ1R(k)χ2‖L2→L2 = O(k−∞) ,

in the sense that for all N , there is CN such that the left-hand side is bounded by CNk
−N

for all k in R+ \ J (this follows from propagation of singularities, see [19, Theorem E.47],
see also [23, Theorem 5.10] for a statement in a simpler setting, and the fact that for all
f ∈ H, R(k)χ2f is “outgoing”, i.e., super-algebraically small away from outgoing directions
in phase-space, see [23, Lemma 5.18]. See also [4, Theorems C.3 and C.4]).

39



2. If the supports of χ1 and χ2 do not intersect the cavity, then in fact

‖χ1R(k)χ2‖L2→L2 ≲ k,

for all k ∈ R+ \ J , see [8, 11]. In other words, if both supports are away from the cavity, one
obtains the non-trapping bound, as if there were no cavity.

3. If the support of χ1 or χ2 do not intersect the cavity, then

‖χ1R(k)χ2‖L2→L2 ≲
√
kρχ(k), (3.4)

for all k ∈ R+ \J , see [16]. Thus, we get an estimate “in-between” the non-trapping estimate
O(k), and the “worst possible” growth ρχ(k) in (3.3).

For Helmholtz problems with boundaries and/or truncated by PML boundaries, some of these
results can be extended. For general statements, including the case of domains with boundaries,
we refer to [19]. Corresponding statements can also be shown for Helmholtz problems truncated by
a PML, see [4, §4, Appendix C]. In the PML region, essentially nothing propagates (rays attaining
this region can be thought as being “absorbed”, or escaping to infinity). Let us state these results
in the case of the model Helmholtz problem of §1.1. We define the following dynamical regions,
where trajectories are defined with respect to the problem (1.2) (i.e., before PML truncation)

Definition 3.1 (Dynamical regions)

1. The cavity, K ⊂ Ω+, is the set of points x ∈ Ω+ for which there is at least one billiard
trajectory passing over x, and which remains in a compact set for all positive and
negative times.

2. The visible set (from the cavity), V ⊂ Ω+, is the set of points x ∈ Ω+ for which there
is at least one billiard trajectory passing over x and remaining in a compact set for all
positive or negative times. Observe that

K ⊂ V .

3. The invisible set (from the cavity) I ⊂ Ω+ is the set of points x ∈ Ω+ for which all
billiard trajectories passing over x escape any given compact set in a finite time, both
in the future and the past. Thus,

I = Ω+ \ V .

We apply PML truncation on a bounded computational domain Ω and let ΩP be an open
neighbourhood of the PML truncation boundary which is strictly contained in the PML region.
We then use the notation from Chapters 1 and 2. Let ΩK,ΩV ,ΩV be open neighbourhoods of,
respectively, K,V \ (K ∪ ΩP) and I \ ΩP in Ω, see Figure 3.4. Estimates on χ1R(k)χ1, for k in a
set where ρ(k) is polynomially bounded, depending on the locations are then gathered in the Table
in Figure 3.4.
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suppχ1

∖
suppχ2 ΩK ΩV ΩI ΩP

ΩK ρ(k)
√
kρ(k) O(k−∞) O(k−∞)

ΩV
√
kρ(k) k k 1

ΩI O(k−∞) k k 1

ΩP O(k−∞) 1 1 1

Figure 3.4: Left: a computational domain with a PML truncation boundary (outer circle) and
an obstacle (in gray). The neighbourhoods ΩK, ΩV , ΩI associated to the dynamical regions of
Definition 3.1 are represented in red, green and blue, respectively. The region represented in
orange must lie strictly inside the PML region. Any ray attaining the PML can thought as being
“absorbed”. This figure was created by Jeffrey Galkowski. Right: bounds on ‖χ1R(k)χ2‖H→H up
to k-uniformly bounded constants, for all k /∈ J , with ρ polynomially bounded on R+ \ J , when
suppχ1, suppχ2 are subsets of Ω⋆, ⋆ ∈ {K,V, I,P}.

Exercise 3.1. (Rays and eikonal equation).
Look for approximate solutions of (3.1) with f = 0 in the form

u(x) = eikS(x)

where S(x) = S0(x) + k−1S1(x) + . . ., and check that, at leading order, S0 must obey the eikonal
equation (also known as Hamilton-Jacobi equation):

H(x,∇S0(x)) = 0 ∀x ∈ Rd.

Suppose that q(t) solves the ODE

q̇ =
∂H

∂p
(q,∇S0(q)) , q(0) = q0

and let p(t) = ∇S0(q(t)). Show that t 7→ (q(t), p(t)) solves the Hamilton equations (3.2).
Remark 3.1 (The Schrödinger equation). Many of the results stated above are also valid for (and in
fact, often stated in terms of) Schrödinger problems, where the operator is P (h) = −h2∆+V (x) and
V (x) ≥ 0 is a potential with sufficient decay at infinity. The results then concern the growth of the
resolvent (P (h)−E)−1 where E is an “energy level”. In this case, the Hamilton equations correspond
to the motion of a classical particle (i.e., following Newtonian mechanics) under a potential V .

3.2 Propagation of errors in the finite-element method
Let us pretend for a moment that Galerkin are locally quasi-optimal, that is, for any k0 > 0 and
any subsets U ⋐ Ũ ⊂ Ω, there is a constant C > 0 independent of k such that

‖u− uh‖H1
k(U) ≤ C inf

vh∈V p(Ωh)
‖u− wh‖H1

k(Ũ) (3.5)
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for all k ≥ k0, u ∈ H1
k, Ωh a sufficiently fine mesh and uh ∈ V p(Ωh) a Galerkin approximation of

u. Here, the local H1
k norm in a subset U ⊂ Ω, ‖ · ‖H1

k(U), is defined by

‖u‖H1
k(U) := inf

{
‖ũ‖H1

k

∣∣ ũ ∈ H1
k coincides with u on U

}
.

Consider a cover
Ω = Ω1 ∪ . . . ∪ ΩN ,

and for every j = 1, ..N , let Ω′
j ⋐ Ωj .2 Then infvh∈Vh

‖u−wh‖H1
k(Ωj) ≲ C(hjk)

p‖u‖Hp+1
k

, and thus,
since u = R(k)f , one would have by (3.5)

‖u− uh‖H1
k(Ω

′
1)

...

‖u− uh‖H1
k(Ω

′
N )

 ≲


(h1k)

p‖χ1R(k)‖Hp−1
k →Hp+1

k

...

(hNk)
p‖χNR(k)‖Hp−1

k →Hp+1
k

 ‖f‖Hp−1
k

where χj ∈ C∞
c (Ω) are such that χj ≡ 1 on Ωj . In such a situation, the best choice of local

mesh-sizes hj would simply be dictated by the rate of growth of ‖χjR(k)‖.
However, local quasi-optimality does not hold in general: in many cases, the Galerkin error in

a given region is influenced by the mesh-size in some other region. To illustrate this, we use the
following toy numerical experiment from [3]. We consider the Helmholtz “impedance” problem

−k−2∆u− u = 0 in Ω and k−1∂nu− iu = g on ∂Ω, (3.6)

in a rectangular domain Ω, with data g chosen so that the exact solution is the plane-wave eikx1 .
We solve this problem using three meshes Ω1

h, Ω2
h and Ω3

h. The meshes Ω
1/2
h are quasi-uniform,

with mesh sizes h2 � h1 (i.e., Ω2
h is more refined than Ω1

h). On the other hand, Ω3
h is a mesh with

sizes h1 in the left-hand half and h2 in the right-hand half (with some transition region in between)
as in Figure 3.5 below.

The Galerkin errors in each case are plotted in Figure 3.6. As expected, the numerical approxi-
mation by the finite-element method with the mesh Ω2

h is much more accurate than with the mesh
Ω1

h (top right and top left panels). But with the mesh Ω3
h, the error in the right-hand part of the

mesh is not the local best approximation error (the error is about 103 times larger than on the mesh
Ω2

h with the same local mesh size); rather, it appears to be dominated by an errors propagating
from the left region.

The results for the same experiment, but choosing this time the data g in (3.6) such that the
solution is eikx2 , are shown in Figure 3.7. They show that, even if the solution does not involve
propagation from the left to the right, the error can still have this property.

3.3 Sketch of a localized argument
We now consider a Helmholtz problem satisfying the assumptions of Chapters 1 and 2, and introduce
a cover

Ω = Ω1 ∪ . . . ∪ ΩN

2that is, Ωj is contained in a compact subset of Ωj .
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Figure 3.5: The mesh Ω3
h.

Figure 3.6: Plot of the quantity log10(10
−12 + |Re(u−uh)|) for the finite-element approximation of

(3.6), on the meshes Ω1
h (quasi-uniform mesh with size h1, top left panel), Ω2

h (quasi-uniform mesh
with size h2 � h1, top right panel), and Ω3

h (non-uniform mesh with size h1 on the left half and h2
on the right half, bottom panel).
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Figure 3.7: Same as Figure 3.6, but with g in (3.6) chosen such that the solution is eikx2 .

by open subsets Ωj ⊂ Ω. Let ϕ1, . . . , ϕN be a smooth partition of unity (p. o. u.) subordinate to
this covering, i.e.,

N∑
j=1

ϕj = 1, and ϕj ∈ C∞(Ω) , suppϕj ⊂ Ωj ∪ ∂Ω , 1 ≤ j ≤ N.

Let χj ∈ C∞(Ω), j = 1, . . . , N such that

suppχj ⊂ Ωj ∪ ∂Ω and ϕj ≺ χj

where the notation “≺” is defined by

u ≺ ũ ⇐⇒ dist(suppu, supp(1− ũ)) > 0 ,

that is, ũ is equal to 1 on a neighbourhood of suppu (with some positive margin).
Let k > 0, u ∈ H1

k, Vh ⊂ H1
k and suppose that uh is a Galerkin approximation of u in Vh. Our

aim is to estimate χj(u− uh). We start by doing this in a negative norm, with the idea to use the
coercivity of P (k) up to S(k) to convert this estimate into an estimate in the H1

k norm (as in the
proof of Theorem 2.7). Thus, given i ∈ {1, . . . , N} and a test function ξ ∈ Hp−1

k , let us compute

〈χi(u− uh), ξ〉 = 〈u− uh, χiξ〉
= 〈P (k)(u− uh), R(k)∗χiξ〉 (duality)
= 〈P (k)(u− uh), (I −Π♯

h)R(k)
∗χiξ〉 (Galerkin orth.)
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=
〈
P ♯(k)(u− uh), (I −Π♯

h)R(k)
∗χiξ

〉
−
〈
S(k)(u− uh), (I −Π♯

h)R(k)
∗χiξ

〉
(Defs. of P ♯(k), S(k))

=

N∑
j=1

〈
P ♯(k)(u− uh), (I −Π♯

h)ϕjR(k)
∗χiξ

〉
−

N∑
j=1

〈
S(k)(u− uh), (I −Π♯

h)ϕjR(k)
∗χiξ

〉
({ϕi} p. o. u)

=

N∑
j=1

〈
P ♯(k)(u− vh,j), (I −Π♯

h)ϕjR(k)
∗χiξ

〉
−

N∑
j=1

〈
S(k)(u− uh), (I −Π♯

h)ϕjR(k)
∗χiξ

〉
(def. of Π♯

h)

where vh,1, . . . , vh,N are arbitrary elements of Vh. To continue this sketch, we now assume that

the operators S(k), P ♯(k), Π♯
h and R♯(k) are local (3.7)

Here, we say that an operator A : H → H is local if

χ1 ⊥ χ2 =⇒ χ1Aχ2 = 0 , (3.8)

where χ1 ⊥ χ2 means that the supports of χ1 and χ2 are at a positive distance from each other. The
assumption (3.7) is usually not satisfied, but under proper assumptions, these operators are in fact
“pseudolocal”, that is, roughly speaking, they satisfy the property (3.8) up to O(k−∞) remainders
that can be successfully controlled in the later stages of the proof. We will give an idea of the proof
of this pseudo-locality for the operators S(k) (that of P ♯(k) = P (k) + S(k) follows because P (k)
will be local by assumption) and R♯(k) in Chapter 4 (see Theorem 4.2); for the pseudo-locality of
Π♯

h, we refer to [4, Section 7].
Observe that

ϕ ≺ χ ⇐⇒ ϕ ⊥ (1− χ).

Thus, since adjoints/products of local operators are again local, we deduce that

P ♯(k)∗(I −Π♯
h)ϕj = χjP

♯(k)∗χj(I −Π♯
h)ϕj and S(k)∗(I −Π♯

h)ϕj = χjS(k)
∗χj(I −Π♯

h)ϕj

that is, roughly speaking, we can “move ϕj across” these operators. Therefore,

〈χi(u− uh), ξ〉 =
N∑
j=1

〈
P ♯(k)χj(u− vh,j), χj(I −Π♯

h)ϕjR(k)
∗χiξ

〉
−

N∑
j=1

〈
S(k)χj(u− uh), χj(I −Π♯

h)ϕjR(k)
∗χiξ

〉
.

We now estimate the right-hand side by using the mapping properties of P ♯(k) and S(k) (Proposi-
tions 2.5 and 2.10):

‖χi(u− uh)‖(Hp−1
k )∗ ≤ C

N∑
j=1

(
‖χj(u− vh,j)‖H1

k
· ‖χj(I −Π♯

h)χjRij(k)
∗ξ‖H1

k
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+ ‖χj(u− uh)‖(Hp−1
k )∗ · ‖χj(I −Π♯

h)χjRij(k)
∗ξ‖(Hp−1

k )∗

)
where

Rij(k) := ϕiR(k)ϕj (3.9)

is the localized resolvent from j to i. One can see that the local adjoint approximability operators,

ηij := χj(I −Π♯
h)χj ·Rij(k)

∗ 1 ≤ i, j ≤ N, (3.10)

will play a role analogous to the adjoint approximability constant η of Definition 1.5. In the
definition of ηij , we see the interaction between

(i) the operators Rij(k), which reflect the strength of propagation between subdomains,
and

(ii) the operators χj(I −Π♯
h)χj , which reflect the local approximation power of Vh on Ωj

(Indeed, concerning the second point, recall from the proof of Theorem 2.7 and Exercise 2.2 that,
due to the k-uniform coercivity of P ♯

k , the operator Π♯
h essentially computes the best approximation

in Vh).
Let us define two matrices B,W ∈ RN×N by

Bij := C‖ηij‖Hp−1
k →H1

k
, Wij := C‖ηij‖Hp−1

k →(Hp−1
k )∗ . (3.11)

With adaptations of the arguments of Chapter 2, and under standard local assumptions for the
finite-element scheme, one will obtain that, up to O(k−∞(hk)p) terms,

Bij ≲ (1 + ρij(k))(hjk)
p , Wij ≲ (1 + ρij(k))(hjk)

2p,

where ρij(k) := ‖Rij(k)‖L2→L2 is the norm of the resolvent from j to i.
Let ‖u− uh‖(Hp−1

k )∗ be the column vector of local Galerkin errors ‖χi(u − uh)‖(Hp−1
k )∗ , and

similarly ‖u− vh‖H1
k

the vector of local best approximation errors, whose components are ‖χi(u−
vh,j)‖H1

k
. We then arrive arrive at the matrix system of inequalities

‖u− uh‖(Hp−1
k )∗ ≤ B‖u− vh‖H1

k
+W‖u− uh‖(Hp−1

k )∗ , (3.12)

which is a localized version of the estimate that we have shown in the case of a uniform mesh (2.10).
In (3.12), “≤” must be understood in the component-wise sense. If the condition

∞∑
n=0

Wn <∞ (3.13)

holds, then (I −W)−1 exists and has positive coefficients, so we obtain

‖u− uh‖(Hp−1
k )∗ ≤ (I −W)−1B‖u− vh‖H1

k
, (3.14)

i.e., a bound on the local Galerkin errors (in a negative norm) by the local best approximation
errors.
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Figure 3.8: Graph representing the propagation of errors between subdomains. The black arrows
indicate the weight carried by the edge from i to j, and the red arrows emphasize that this weight
corresponds to errors flowing in the opposite directions (from j to i).

To go further, we now give a sufficient condition for (3.13) to hold. For this, we view W as
the adjacency matrix of a directed graph, with N nodes representing Ω1, . . . ,ΩN , and with the
edge from node i to j carrying the weight Wij . This graph can be thought as a representation of
the error propagation between subdomains, with the weight Wij indicating the amount of error
travelling from Ωj to Ωi, in view of (3.12). Take note that the error on the edge i → j thus flows
from j to i, see Figure 3.8.

Recall that (Wn)ij is equal to the sum of the weights of all paths3 of length n from node i to
j. Therefore, the sum converges if for any i and j, the sum of weights of all paths from i to j is
finite. Clearly, this is not possible if there is a loop in the graph with weight > 1 (by taking this
loop a large number of times, one can construct a path from i to j with an arbitrarily large weight).
Conversely, if the sum c∞ of the weights of all simple loops4 is < 1, then the sum is finite and in
this case, one has the bound

(I −W)−1 ≤ 1

1− c∞
T , Tij := sum of weights of all direct path from i to j, 5

see Exercise 3.2, [4, Appendix B]. The loop condition can be interpreted intuitively as follows: if
there is a loop with weight > 1, the numerical error can be amplified infinitely by propagating along
this loop an arbitrary amount of times.

Thus, under the condition that c∞ < 1, and with the assumption (3.7), we obtain the estimate

‖u− uh‖(Hp−1
k )∗ ≤

1

1− c∞
T B‖u− vh‖H1

k
.

3A path from i to j is a finite sequence of edges of the form (i → i2)(i2 → i3) . . . (in → j). Its length is the number
of its edges, and its weight is the product Wii2 . . .Winj of the weights of its edges. The empty path is considered
a path from i to i for each i.

4A simple loop is a path from a node to itself, which visits every node other than the origin/end exactly once.
5A direct path is one that does not visit twice the same node, with the convention that the empty path is a direct

path (in other words, T has ones on its diagonal).
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To translate this result in terms of the mesh sizes hj , the main remaining work is then to estimate
the coefficients of W and B, i.e., the norms of the operators ηij from (3.10).

Exercise 3.2. (Loops in weighted graphs).
Let N ∈ N and let G be a directed graph with nodes 1, . . . , N , with a weight Wij ≥ 0 on the edge
(i → j). For i, j ∈ {1, . . . , N}, denote by Pij the set of all paths from i to j Dij ⊂ Pij the set of
direct paths from i to j (with Dii = {0} by convention, with 0 standing for the empty path), and let
SL be the set of simple loops. Given a path p = (i1 → i2)(i2 → i3) . . . (in → in+1), let

|p| := n , w(p) := Wi1i2 . . .Winin+1
,

the length and the weight of the path, respectively.

1. Show that
(Wn)ij =

∑
p∈Pij , |p|=n

w(p).

2. Show that there exists an injective map

Dec : Pij → Dij × (SL(N))

(where A(N) stands for the set of finite sequences of elements of A) which is weight-preserving,
that is, for all p ∈ Pij

w(p) = w[Dec(p)]

with, for any (q, (ℓ1, . . . , ℓn)) ∈ D× (SL(N)),

w
[(
q, (ℓ1, ℓ2, . . . , ℓn)

)]
= w(q)w(ℓ1) . . . w(ℓn).

(Hint: construct Dec by “removing loops one by one” until only a direct path is left).

3. Deduce that if
c∞ :=

∑
ℓ∈SL

w(ℓ) < 1 ,

then I −W is invertible, that its inverse has non-negative coefficients, and∑
p∈Dij

w(p) ≤
(
(I −W)−1

)
ij
≤ 1

1− c∞

∑
p∈Dij

w(p).

3.4 Local error estimate
We now state the main result of [4] in the setting of the model Helmholtz problem of §1.1, with
then P (k), R(k) and ρ(k) defined as in Definitions 1.2 and 1.3.

We let the space H1
k be defined as in Remark 1.2. Recall the dynamical regions K,V, I from

Definition 3.1. Recall the neighbourhoods Ωi, i = 1, ..., 4, with i = 1, 2, 3, 4 corresponding to
K,V, I,P, respectively (we also write ΩK instead of Ω1, and so on).
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We denote by V p be the Lagrange finite-element scheme of order p. For a mesh Ωh, we introduce
the following measure of “local uniformity at scale ε”

ν(Ωh, ε) := sup
x∈Ω

sup
K,K′∈Ωh

K∩B(x,ε) ̸=∅
K′∩B(x,ε) ̸=∅

hK
hK′

.

Let
h⋆ :=

(
sup

K∈Ωh , K∩Ω⋆ ̸=∅
hK

)
, ⋆ ∈ {K,V, I,P}

(we also write h1 = hK and so on) and h := maxK∈Ωh
hK . Let W and B and T be the 4 × 4

matrices defined by

Bij := (1 + ρij(k))(hjk)
p , Wij := (1 + ρij(k))(hjk)

2p with ρij(k) := ‖1Ωi
R(k)1Ωj

‖L2→L2 ,

Tij :=
∑
p∈Dij

Wij .

Observe that the quantities ρij are bounded via the table in the right panel of Figure 3.4, allowing
to effectively compute bounds on B, W and (thus) T in terms of the local mesh sizes and k.

Theorem 3.1 (Local error estimate for the model Helmholtz problem)

Given k0 > 0, N > 0, β > 0, J ⊂ R+ such that ρ is polynomially bounded on R+ \ J ,
Ω′

⋆ ⋐ Ω⋆ for each ⋆ ∈ {K,V, I,P}, there exists ε > 0 and C > 0 such that the following
holds.
For all k ∈ (k0,+∞) \ J and for any mesh Ωh of Ω satisfying γ(Ωh) + ν(Ωh, k

−1) ≤ β and

(hKk)
2pρ(k) + (hVk)

2pk + (hIk)
2pk + (hPk)

2p ≤ ε , (3.15)

every u ∈ H1
k admits a unique Galerkin approximation uh ∈ V p(Ωh) and the estimate

‖u− uh‖H1
k(Ω

′
K)

‖u− uh‖H1
k(Ω

′
V)

‖u− uh‖H1
k(Ω

′
I)

‖u− uh‖H1
k(Ω

′
P)


≤ C (I + T B)



‖u− vh,K‖H1
k(ΩK)

‖u− vh,V‖H1
k(ΩV)

‖u− vh,I‖H1
k(ΩI)

‖u− vh,P‖H1
k(ΩP)


+ Ck−N‖u− vh‖H1

k
(3.16)

holds for any vh ∈ V p(Ωh) and vh,⋆ ∈ V p(Ωh) with ⋆ ∈ {K,V, I,P}.

Remark 3.2 (Comments on Theorem 3.1).

1. The propagation graph corresponding to the matrix W is displayed in Figure 3.9. The
condition that (3.15) holds with ε > 0 small enough is necessary and sufficient to ensure
c∞ < 1 (with c∞ the sum of weights of all simple loops) for all k ∈ (k0,∞) \ J . Indeed,

49



without this condition, one of the loops (i → i) will be > 1 for k large enough. On the
other hand, if the condition holds, the only edge carrying a weight ≳ 1 is (K → V) (with the
weight (hVk)

2p
√
kρ). If a simple loop ℓ contains this edge, it must also contain either the

edge (V → K), or an edge with a O(k−∞), hence smaller, weight. Thus, the weight of ℓ is
bounded by a k-independent multiple of

(hVk)
2p
√
kρ(k) · (hKk)2p

√
kρ(k) = (hVk)

2pk · (hKk)2pρ(k) ≤ ε2.

2. The numerical experiments in [4] suggest that the bound in Theorem 3.1 is sharp.

3. The main result in [4] is stronger than the one stated here for several reasons, including the
following: (i) it holds for an arbitrary number of subdomains, (ii) it weakens the restrictions
over the mesh-size in the PML region (one only needs a constant number of dofs per wavelength
in the PML), (iii) it gives bounds on the high- and low-frequencies of the Galerkin error and
(iv) it gives bounds not only on the H1

k-norm of the error, but also the H-norm and negative
norms. We will ignore these improvements in what follows for the sake of conciseness.

ΩK ΩV ΩI ΩP

(hKk)
2p
√
kρ

(hVk)
2p
√
kρ

(hVk)
2pk

(hIk)
2pk

(hPk)
2p

(hVk)
2p

(hIk)
2p

(hPk)
2p

(hKk)
2pρ (hVk)

2pk (hIk)
2pk (hPk)

2p

Figure 3.9: The graph showing propagation of errors for the decomposition into ΩK, ΩV , ΩI , and
ΩP .

Corollary 3.2 (Sufficient condition for k-uniform quasi-optimality)

If, in addition to the assumptions of Theorem 3.1,

(hKk)
pρ(k) + (hVk)

p
√
kρ+ (hIk)

pk + (hPk)
pk ≤ ε (3.17)

then
‖u− uh‖H1

k
≤ C inf

vh∈V p(Ωh)
‖u− vh‖H1

k
.

Proof. The condition (3.17) ensures that all coefficients of B and T are bounded. The conclusion
follows by using the triangle inequality and choosing vh,K = vh,V = vh,I = vh,P = vh, with vh the
best approximation of u in V p(Ωh).
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Chapter 4

Pseudo-locality results

In §3.3, we introduced the assumption in (3.8) requiring that the operators P ♯(k), S(k), R♯(k)

and Π♯
h be local, but this is not quite true. In this chapter, we prove that, under appropriate

assumptions on repeated commutators between P (k) and cutoff functions (see Definition 4.2), the
operators S(k) and R♯(k) are then pseudo-local; that is, roughly, for any cutoffs χ ⊥ ψ,

χS(k)ψ = O(k−∞) , χR♯(k)ψ = O(k−∞).

We will only show the interior pseudo-locality, i.e., we will show this in the case where the cutoffs
χ and ψ are supported away from the boundaries, see Remark 4.2.

4.1 Order notation and interior cutoffs
In this section, for all k > 0, we denote H−∞

k := ∪n∈ZHn
k . Let L the vector spaces of families

{L(k)}k>0 such that for each k > 0, L(k) : H−∞
k → H−∞

k is a linear operator. Sometimes, we write
L(k) to denote the whole family (we will do this for instance with P (k), P ∗(k) and P(k)). For
A,B ∈ L , we denote by AB ∈ L the element of L defined by {A(k)B(k)}k>0. For A ∈ L , let
adA : L → L the linear operator defined by

adAB := AB −BA.

Definition 4.1 (Order notation)

Given L ∈ L and f : R+ → R+ we write

L = Om(f)

if, L(k) maps Hn
k to Hn−m

k for all k > 0 and n ∈ Z, and, for all k0 > 0 and all n ∈ Z, there
exists C(k0, n) such that the estimate

‖L(k)u‖Hn−m
k
≤ Cf(k)‖u‖Hn

k
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holds for all k ≥ k0 and u ∈ Hn
k . If A = Om(kM ) for all m < 0 or for all M < 0, we then

write
A = O−∞(kM ) , A = Om(k−∞) ,

respectively. If both properties hold, we write

A = O−∞(k−∞).

Observe that if A = Om1
(f1) and B = Om2

(f2), then AB = Om1+m2
(f1f2)

Remark 4.1 (Order of S(k) and R♯(k)). Observe that by the definition of S(k) in Definition 2.4,
and by Propositions 2.9 and 2.10, one has

S(k) = ψ♯(P) = O−∞(1) , R♯(k) = O−2(1).

Moreover, by Exercises 1.9, 2.1 and duality,

R(k) = O−2((1 + ρ(k)).

Assumption 4.1 (Mapping properties of P (k))

The operator P (k) satisfies P (k) = O2(1).

It follows by duality that P (k)∗ = O2(1) and similarly for P(k).

Definition 4.2 (Interior cutoffs)

We say that χ ∈ L is an interior cutoff if it satisfies

(i) χ = O0(1)

(ii) For all N ∈ N,

adN
χ Q = O−N+2(k

−N ) and adN
χ∗Q = O−N+2(k

−N )

where Q is any one of the operators P (k), P ∗(k) and P(k).

Remark 4.2 (Boundaries). The assumption 4.1 does not hold in concrete settings if we choose the
spaces Hn

k as in Remark 1.3. This is due to the fact that the action of P (k) “removes boundary
conditions”. For a similar reason, for general smooth cutoffs χ, one will not have

adN
χ P (k) = O−N+2(k

−N )

due to boundary contributions.
Nevertheless, an appropriate assumption is

ψP (k)ψ = O2(1)

if ψ ∈ C∞
c (Ω). Moreover, for any cutoff χ supported away from boundaries, one can find ψ ∈ C∞

c (Ω)
with χ ≺ ψ, and in this case,

adN
χ P (k) = adN

χ (ψP (k)ψ)
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and then, the estimate O−N+2(k
−N ) is indeed satisfied in concrete settings (see Exercise 4.1).

To properly show pseudo-locality up to the boundary, one needs to introduce another scale
of spaces, and construct cutoff functions with a special behaviour at the boundary. We will not
attempt to do this here.

Exercise 4.1. (Commutators with differential operators).
Let Ω ⊂ Rd be a non-empty open set and for every k > 0, let L(k) : C∞(Ω) → C∞(Ω) be the
differential operator defined by

L(k)u(x) =
∑

|α|≤N

aα(x)k
−|α|∂αu(x)

for some functions aα ∈ C∞(Ω).
Let χ ∈ C∞

c (Ω) and M ∈ N and n ≥ max(0,M − N). Show that there exists C > 0 such that
for any u ∈ C∞(Ω) and for all k > 0,

‖(adM
χ L)u‖Hn

k (Ω) ≤ Ck−M‖u‖Hn+N−M
k (Ω)

where the norm Hn
k (Ω) is defined by ‖u‖2Hn

k (Ω) :=
∑

|α|≤n k
−2|α|‖∂αu‖2L2(Ω).

Definition 4.3 (Separated operators)

We say A,B ∈ L are separated if there exists an interior cutoff χ such that

A(I − χ) = 0 and χB = 0.

We think of A and B as two cutoff functions with disjoint, compact supports in Ω.

4.2 Pseudolocality of S(k) and R♯(k)

We can now state the main result of this chapter.

Theorem 4.2 (Pseudo-locality of S and R♯(k))

Suppose that Assumption (1.3)-(1.6), (2.1) and (4.1) hold. Let S and R♯ be defined as in
Definition 2.4. Let A,B ∈ L be separated and such that

A = O0(1) , B = O0(1) .

Then,
AS(k)B = O−∞(k−∞) , AR♯(k)B = O2(k

−∞).

Theorem 4.2 is obtained as a consequence of the following lemma:
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Lemma 4.3 (Commutator estimates for S(k) and R♯(k))

Let the assumptions of Theorem 4.2 be satisfied. Let χ be an interior cutoff. Then, for any
N ∈ N,

adN
χ S(k) = O−∞(k−N ) and adN

χ R
♯(k) = O−2(k

−N ).

Proof of Theorem 4.2 using Lemma 4.3. By assumption, there exists an interior cutoff χ such that
A = Aχ and χB = 0. Thus,

AS(k)B = (Aχ)S(k)B = AS(k)(χB) +A(adχS(k))B = A(adχS(k))B.

By repeating this argument N times, and using Lemma 4.3, we obtain

AS(k)B = A(adN
χ S(k))B = O−∞(k−N ).

Since this is true for any N this shows the pseudo-locality of S(k). The reasoning for R♯(k) is
identical.

We now set out to prove Lemma 4.3. For this, the central tool will be the Helffer-Sjöstrand
formula, that we recall now. The name of the formula is from Bernard Helffer and Johannes
Sjöstrand. We refer to [18, Chapter 8] for historical notes about this formula, and to [48] for the
proof of the particular form of this formula stated here. The function w in the formula is obtained
as (a multiple of) a almost-analytic extension of f , as in [48, Theorem 3.6].

Proposition 4.4 (The Helffer-Sjöstrand formula)

For every smooth compactly supported function f : R → R, there exists a continuous
function w : C→ C such that if A is a self-adjoint operator on a Hilbert space, then

f(A ) =

∫
C
w(z)(A − z)−1dmC(z)

where dmC(x+ iy) = dx dy and for every M ∈ N, there exists κM such that

|w(z)| ≤ κM 〈z〉−2M |=(z)|M for allz ∈ C. (4.1)

Let us now summarize the strategy for proving Lemma 4.3. By the Helffer-Sjöstrand formula,

adN
χ f(P) =

∫
C
w(z)adN

χ (P(k)− z)−1dmC(z).

For N = 1, one has

adχ(P(k)− z)−1 = (P(k)− z)−1(adχP(k))(P(k)− z)−1,

and more generally, for N ≥ 1, it will be possible to express adN
χ (P(k)−z)−1 in terms of adN

χ P(k).
Since we can bound the latter when χ is an interior cutoff (by Definition 4.2), we will thus obtain
bounds on adN

χ (P(k) − z)−1 by using the mapping properties of (P(k) − z)−1 (see Proposition
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2.11). If we can do this with some control over the variable z, we can then integrate these estimates
in the Helffer-Sjöstrand formula to obtain a bound for adχf(P). Applying this with f = ψ♯ (and
recalling that S(k) = ψ♯(P)), this allows to bound the commutator involving S(k) in Lemma 4.3.

The control with respect to z is the object of the next lemma. To state it, we use the notation
that A = Om(f(k, n, z)) where z ∈ U ⊂ C. This means that for all k0 > 0, there is C such that for
all k ≥ k0, n ∈ Z and all z ∈ U ,

‖Au‖Hn−m
k
≤ Cf(k, n, z)‖u‖Hn

k
.

Lemma 4.5 (Estimates commutators with inverses)

Let U ⊂ C. Suppose that X = Om(1) and for every z ∈ U , let Yz, Y ∗
z : Hn+2

k → Hn
k be

invertible. Furthermore, suppose that there are Ln ≥ 0 such that

(a) for all z ∈ U ,

Y −1
z = O−2

(
C1(z)〈z〉Ln

)
, (Y ∗

z )
−1 = O−2

(
C1(z)〈z〉Ln

)
(b) for all z ∈ U ,

adN
XYz = O2+N(m−1)

(
k−NC2(z)

)
, adN

X∗Y ∗
z = O2+N(m−1)

(
k−NC2(z)

)
for some functions C1, C2 : U → R+. Then for all N ∈ N, n ∈ Z, there is Mn such that, for
all z ∈ U ,

adN
XY

−1
z = O−2+N(m−1)

(
k−N (1 + C1(z))

N+1(1 + C2(z))
N 〈z〉Mn

)
.

Proof. The basic idea is that adN
XY

−1
z is equal to a linear combination of terms of the form

Y −1
z (adi1

XYz)Y
−1
z (adi2

XYz)Y
−1
z . . . Y −1

z (adiM
X Yz)Y

−1
z , and the next definitions formalize this more

precisely.1
We will prove the lemma by showing the estimate for adN

XY
−1
z acting on elements of H and then

(using the second parts of assumptions (a) and (b)) argue by duality to act on H−n
k .

An operator aN : H → H is called an (N, z)-atom if either

(i) N = 0 and aN = 1, or

(ii) aN = (adN
XYz)Y

−1
z , or

(iii) aN = aiaj where ai is an (i, z)-atom and aj is an (j, z)-atom with i + j = N and 1 ≤ i, j ≤
N − 1.

1It is in fact possible to give a full closed-form expression for adN
XY −1 involving sums of compositions of quantities

of the form (adi
XY ) and Y −1. However, the formula and its proof, involving sums over all possible ordered partitions

of {1, . . . , N}, are slightly cumbersome and for the present purposes, this would be more information than actually
needed.
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An operator tN is called an (N, z)-term if it is of the form

tN =
J∑

j=1

σjY
−1
z aN,j

where J ∈ N, σj are real coefficients and aN,j are (N, z)-atoms. For example,

t5 = Y −1
z (ad5

XYz)Y
−1
z − Y −1

z (ad2
XYz)Y

−1
z (ad3

XYz)Y
−1
z

is a (5, z)-term. Notice that if ti and tj are (i, z)- and (j, z)-terms, then tiYztj is an (i+ j, z)-term.
It follows immediately from assumptions (a) and (b), by induction on N , that if tN (z) is a

(N, z)-term for all z ∈ U , then

tN (z) = (1 + C1(z))
N+1(1 + C2(z))

NO−2+N(m−1)(k
−N 〈z〉Mn ;Hk → Hk).

Thus it remains to show that for all z ∈ U , adN
XY

−1
z : H → H is an (N, z)-term. For this, it suffices

to prove that, for all N ∈ N,

tN is an (N, z)-term =⇒ adXtN is an (N + 1, z)-term. (4.2)

By linearity, it is enough to prove (4.2) in the case where tN = Y −1
z aN for some (N, z)-atom aN .

We consider separately the three cases (i), (ii), (iii) above in the definition of an (N, z)-atom.
Case (i): If aN = 1, then

adXtN = adXY
−1
z = XY −1

z − Y −1
z X = Y −1

z YzXY
−1
z − Y −1

z XYzY
−1
z = −Y −1

z (adXYz)Y
−1
z

which is a (1, z)-term acting on u. This shows the implication (4.2) for N = 0, and in the following
cases, we fix N ≥ 1 and proceed by induction assuming that it holds for all i ≤ N − 1.

Case (ii): If aN = (adN
XYz)Y

−1
z , then

adXtN = (adXY
−1
z )(adN

XYz)Y
−1
z + Y −1

z (adN+1
X Yz)Y

−1
z + Y −1

z (adN
XYz)(adXY

−1
z ).

The second term on the right-hand side is an (N +1, z)-term. The first term on the right-hand side
can be rewritten as

−Y −1
z (adXYz)Y

−1
z︸ ︷︷ ︸

(1, z)-atom

(adN
XYz)Y

−1
z︸ ︷︷ ︸

(N, z)-atom

.

This is thus an (N + 1, z)-term. Similarly, the third term is an (N + 1, z)-term, and thus adXtN is
an (N + 1, z)-term.

Case (iii): If aN = aiaj then, since aj : H → H,

tN = Y −1
z aiaj = Y −1

z aiYzY
−1
z aj = tiYztj

where ti := Y −1
z ai and tj := Y −1

z aj are (i, z)- and (j, z)-terms, respectively, with i+ j = n. Thus

adXtN = (adXti)Yztj + ti(adXYz)tj + tiYz(adXtj).
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The first term is an (N + 1, z)-term by the induction hypothesis. Similarly, the last term is an
(N + 1, z)-term. The middle term can be rewritten as

ti(adXYz)tj =

(i + (j + 1), z)-term︷ ︸︸ ︷
tiYz Y

−1
z (adXYz)Y

−1
z︸ ︷︷ ︸

(1, z)-term

Yztj

︸ ︷︷ ︸
(j + 1, z)-term

which is an (N + 1, z)-term. This concludes the proof.

We can now complete the proof of Lemma 4.3, and thus, of Theorem 4.2.

Proof of Lemma 4.3. 1. Let f ∈ C∞
c (R). By the Helffer–Sjöstrand formula,

adN
χ f(P) =

∫
C
w(z)adN

χ (P(k)− z)−1 dmC(z).

By Lemma 4.5 with X = χ, U = C \ R, Yz = (P(k) − z), the definition of interior cutoffs,
and the resolvent estimate of Proposition 2.11,

adN
χ (P(k)− z)−1 =

(
1 +

〈z〉
|=(z)|

)N

O−2+N(m−1)(k
−N 〈z〉Mn).

Therefore,

adN
χ f(P) = O−2+N(m−1)

(
k−N

∫
CN

w(z)〈z〉Mn

(
1 +

〈z〉
|=(z)|

)N

dmC(z)

)
.

The bound (4.1) on w implies that the integral is finite, and thus, for all f ∈ C∞
c (R),

adN
χ f(P) = O−2+N(m−1)(k

−N ). (4.3)

2. We now upgrade the regularity index from −2 + N(m − 1) to −∞ by induction on N . For
N = 0,

ad0
χf(P) = f(P) = O−∞(1) (4.4)

by Proposition 2.9. Next fix an integer N ≥ 1 and suppose that for all i ≤ N − 1 and all
g ∈ C∞

c (R),
adi

χg(P) = O−∞(k−i).

Let f ∈ C∞
c (R) and let f1 and f2 such that f = f1f2. Thus f(P) = f1(P)f2(P) and thus,

using the Leibniz identity

adN
X(Y Z) =

N∑
i=0

(
N

i

)
(adi

XY )(adN−i
X Z),

we obtain

adN
χ (f1(P)f2(P))
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= f1(P)(adN
χ f2(P)) + (adN

χ f1(P))f2(P) +

N−1∑
i=1

(
N

i

)
(adi

χf1(P))(adN−i
χ f2(P)).

Bounding the first two terms on the right-hand side by (4.4) and (4.3), and bounding the
third term by the induction hypothesis, we obtain that

adN
χ (f1(P)f2(P)) = O−∞(1)O−2+N(m−1)(k

−N ) +

N−1∑
i=1

O−∞(k−i)O−∞(k−N+i)

= O−∞(k−N ).

This completes the induction, showing that for any f ∈ C∞
c (R),

adN
χ f(P) = O−∞(k−N ).

Applying this with f = ψ♯, this shows the claimed commutator estimate for S(k).

3. In turn, we obtain the commutator estimate involving R♯(k) by applying Lemma 4.5 with
X = χ, U = {1} and Y1 = P ♯(k). Indeed, for assumption (a), the required estimate is given
by Proposition 2.10, while for assumption (b),

adN
χ P

♯(k) = adN
χ P (k) + adN

χ S(k) = O2+N(m−1)(k
−N ) +O−∞(k−N )

by the definition of spatial cutoffs (Definition 4.2) and by the previous step.

.
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