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Chapitre 1

Fonctions holomorphes, Fonctions analytiques

1.1 Généralités sur les fonctions holomorphes, Conditions de Cauchy-
Riemann

Exercice 1 - Opérations sur les fonctions holomorphes
En utilisant la définition par C-différentiabilité :

1. Démontrer que la somme ou le produit de deux fonctions holomorphes f, g : U — C, définies sur un ouvert
U de C, sont encore holomorphes. Déterminer leur dérivée complexe.

2. Méme question pour la fonction (1/f) : z € U — (1/f(2)) € C*, en supposant que la fonction holomorphe
f : U — C* ne s’annule pas.

3. Méme question pour f o g, en supposant cette fois que g est holomorphe de V' (un ouvert) dans U.

Exercice 2
On munit R? de sa structure euclidienne canonique.
1. Montrer que I’application f : z € C — (1 + i)z € C est une similitude directe. Déterminer le rapport de
cette similitude, et 1’angle de la rotation sous-jacente.
2. Déterminer la différentielle au point zy = 1 de I'application f : R> ~ C — R?> ~ C définie par f(z) =
z + z2. L application f est-elle holomorphe ?
3. Montrer que la composition de deux similitudes directes est une similitude directe. En déduire que si f :
V — Cetg: U — V sont deux fonctions holomorphes, définies sur les ouverts U,V C C, alors f o g :
U — C est holomorphe.

Exercice 3
Soit U un domaine de C, ¢’est a dire un ouvert connexe non-vide.

1. Montrer qu’une fonction continue de U dans C localement constante est constante.

2. Soit f de U dans C, et C'! vue comme fonction définie sur une partie de R?. Montrer que si % et % sont
nulles sur U, alors f est constante sur U.

Exercice 4
Soit U un domaine de C et f une fonction holomorphe sur U. Montrer que les assertions suivantes sont équiva-
lentes.
1. f est constante.
R(f) = Re(f) est constante.
S(f) = Im(f) est constante.
| f] est constant.
f est holomorphe (on dit que f est anti-holomorphe).

AN

Exercice 5
Soit U un domaine et f, g deux fonctions holomorphes sur U.

1. On suppose que pour tout z € U, il existe ¢, € R tel que f(z) = g(z) + c.. Montrer qu’il existe ¢ € R tel
que pour tout z € U ona f(z) = g(z) + ¢

2. On suppose que pour tout z € U, il existe ¢, € R tel que f(z) = ¢, - g(z). En admettant que si g n’est pas
identiquement nulle, on a U\ Z(g) connexe en notant Z(g) les zéros de g, montrer qu’il existe ¢ € R tel que
pour tout z € U on a f(z) = ¢ g(2).

3. On note respectivement P = Re f et Q = Im f la partie réelle et la partie imaginaire de f. Déterminer
toutes les fonctions ()1 : U — R pour lesquelles f; = P + i)y : U — C est holomorphe.
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4 Chapitre 1. Fonctions holomorphes, Fonctions analytiques

4. On suppose qu’il existe F' € C1(R, R) telle que R(f) = F(S(f)). Que peut-on dire de f ?

Exercice 6
Ecrire les conditions de Cauchy Riemann en polaire. Précisément, en considérant une fonction holomorphe f sur
un ouvert U et p : (r,0) — (r cos, rsinf), calculer :

Ifop) O(fop)
or '’ 0

Exercice 7
On prend les notations : z = x + iy, x = R(2),y = I(2).

1. Soit R la fonction polynomiale définie par R(z) = x + 2ixy. En quels points zg = x¢ + iyo admet-elle une
dérivée complexe ?

2. La fonction polynomiale P(z) = x + iy? est elle holomorphe ? Et Q(2) = 22 + y? + ixy?

3. Soit P € C[X,Y]. Montrer qu’il existe un polyndme Q € C[X,Y] tel que pour tout z € C,ona P(z,y) =
Q(z,2).

4. Montrer qu’une fonction polynomiale f en x et y est holomorphe si et seulement s’il existe un polynome
complexe tel que f(x,y) = P(z) pour tout z.

Exercice 8
9 _1(0 _ ;0 o _1(o 4,0
Onnote%—ﬁ(% Zay)etaz—Q(am"‘Zay)'

1. (a) Calculer % et % pour les fonctions f : R? ~ C — R? ~ C suivantes : f : (z,y) — o, f : (z,y) —

V2% fiz— 2, fi2—2 f12—2"(neZ).
(b) Soit f : z — P(z) avec P € C[X], montrer que :

OP(z)
0z

—p), P op, _OPE)

Généraliser a f développable en série entiere.
2. (a) Montrer qu’une fonction f : U C R? ~ C — R? ~ C, différentiable sur un ouvert U du plan, est
holomorphe si et seulement si % est identiquement nulle.
(b) Montrer que, si la fonction f : U — C est holomorphe, on a I’égalité % = f'(2).
3. On dit que [ est antiholomorphe quand 7~ = 0.

(a) Donner des exemples de fonctions antiholomorphes.

(b) Montrer qu’une fonction f : U — C est antiholomorphe si et seulement si la fonction h : z €
U — f(z) € C est holomorphe.

Exercice 9 - Fonction harmoniques sur un domaine
On définit le laplacien d’une fonction C2 sur un domaine U en posant :

o?f  O*f

On dit que f est harmonique lorsque A f = 0 sur U.

1. On admet ici qu’une fonction holomorphe est C2. Montrer qu’une fonction holomorphe est harmonique ;
idem pour sa partie réelle et imaginaire.

2. Montrer que sur les fonctions C?, A = 48‘3—;2 = 4£—2z. Retrouver la question précédente.

3. Donner une condition nécessaire et suffisante sur les parameétres réels a, b, ¢ pour que la fonction P : R? — R
définie par P(z,y) = ax? + 2bxy + cy? soit la partie réelle d’une fonction holomorphe f : C — C.

4. Montrer qu’une fonction harmonique réelle est localement la partie réelle d’une fonction holomorphe. Indi-
cation : on pourra montrer qu’ une fonction holomorphe sur un disque admet une primitive holomorphe.

Pour les curieux, ce dernier résultat n’a pas de version globale, on peut le voir avec u(x + iy) = % log (:c2 + y2)
qui donnerait une détermination du log sur C*, ce qui n’est pas possible (ce sera montré dans les cours suivants).
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1.2 Séries entieres

Exercice 10
Pour une suite (a,,),,cy
défini par I’expression

de nombres complexes, le rayon de convergence de la série entiére > a, 2™ associée est
R = sup {r > 0;]a,r"| estborné } € [0, +o0]

1. (a) Montrer, avec la convention 1/0 = oo, I’égalité 1/R = lim sup (|an|1/”).

An 41
an

(b) Sitousles (a,,) sont non nuls a partir d’un certain rang, montrer qu’on a I’inégalité 1 /R < lim sup

Donner un exemple ou I’inégalité est stricte.
2. Peut-on avoir R =07?
3. Rappeler les démonstrations des propriétés fondamentales suivantes :

(a) Pour 0 < r < R, la série entiere converge normalement sur le disque fermé D(0, ).
(b) Si|z| > R, lasérie Y a,z™ diverge grossiérement (terme général non borné).

4. Montrer que les séries entieres > a, 2™ et Y na,z" ont méme rayon de convergence.

5. (a) Déterminer le rayon de convergence des séries entieres >_ 2", Y n=2z" et > n= 12"
(b) Etudier la convergence des deux permieres séries sur le cercle de convergence.
(c) Etudier la convergence de la troisieme série aux deux points £1.

(d) Bonus. Etudier la convergence de la troisieme série sur le cercle de convergence (cette question néces-
site de connaitre la transformation d’ Abel).

Exercice 11 1. Soient Y a,z™ et > b, 2" deux séries entieres de rayons de convergence R; et R.
Montrer que, lorsque |z| < min (Ry, Ra), le produit (>~ a,2™) (3 b, 2™) s’écrit comme somme d’une série
entiere Y ¢, 2", de rayon de de convergence R > min (R, Rs).
Déterminer les coefficients (¢,,) en fonction des (a,,) et des (b,,).
2. Soit la série entiere :i% %n’ Montrer que son rayon de convergence est infini. On note exp : z € C —
e® € C sa somme. Montrer ’égalité e*T* = e*e® pour tous z,w € C.

iz iz

Exercice 12 _ _
it B
Pour z € C, on pose cos(z) = “—5— etsin(z) = ©

767
21

1. Lemme : Soient f et g deux fonctions entieres égales sur R. Montrer qu’elles sont égales sur C.

2. Montrer que cos et sin sont des fonctions entieres 27-périodiques.

3. Pour a, b € C, exprimer cos(a + b) et sin(a + b) en termes des cos et sin de a et de b.

4. Montrer I’égalité cos? z + sin? z = 1 pour tout z € C. Les fonctions cos et sin sont-elles bornées sur C ?

Exercice 13

On définit, quand c’est possible, la fonction sinus par sin(z) = > (1" 2p+1

peN p+1)17 :
1. Les propositions suivantes sont elles vraies ?

(a) La fonction sinus est bien définie sur C.

iz —iz
e —¢e

(b) Vz € C,sin(z) = &
(c) Vz € C,sin(z) = (eiz).
(d) La fonction sinus est bornée sur C.
(e) Siz € R alors la fonction sinus est la fonction habituelle sur R.
(f) Il existe une fonction f holomorphe différente du sinus complexe, mais qui coincide avec le sinus réel
quand z € R.
2. Pour quelles valeurs de z € C at-on sin(z) = 0?

3. Montrer que la fonction f définie par f(z) = sin (ﬁ) est holomorphe sur le disque ouvert D(0, 1). Quels

sont les zéros de f sur ce disque ? Est-ce en contradiction avec le principe de zéros isolés ?

Exercice 14
Soient P, ) € C[X], avec Q(0) # 0, et la fraction rationnelle f = P/Q. Soit I’ensemble des zéros Z = {z € C |
Q(z) = 0} de @, que I’on suppose non vide, et « = inf{|z|,z € Z}.
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1. Montrer que f est holomorphe sur U = C\ Z.
2. Montrer que f est développable en série entiere en 0 sur le disque D(0, ).

Exercice 15
Soient Y a,z™ une série entiere de rayon de convergence égal a 1, et f : D(0,1) — C sa somme. On dit qu’un
point u sur le cercle de convergence S' = {|u| = 1} est un point régulier si il existe une fonction holomorphe
gu : Vo = D(0,1)U D (u,ry) — C telle que g, = f sur D(0, 1). Sinon, on dit que u est un point singulier. (Faire
un dessin!)
1. On considere ici I’exemple de la série entiere ) | 2™. Exprimer sa somme f sous forme d’une fraction ration-
nelle, puis déterminer les points singuliers du cercle de convergence.
2. On veut montrer qu’il existe toujours des points singuliers sur le cercle de convergence. On procede par
1’absurde, et on suppose que tout point u € S! est un point régulier.
(a) Soientu,v € S'etry,r, > 0tels que D (u,r,)ND (v,7,) # 0. On veut montrer que DN D (u,7,,) N
D (v,7,) # 0 (faire un dessin).
On pose t = ——. Montrer que le point w = tu+ (1 —¢)v appartient a I'intersection DN D (u, 7,) N
D (v,r,). On commencera par remarquer que |u — v| < 7, + 7.
(b) En déduire que f se prolonge en une fonction holomorphe définie sur un ouvert V' contenant le disque
unité fermé D(0,1).
(c) Montrer que V' contient un disque D(0, R) avec R > 1.
(d) Montrer enfin que I’ensemble des points singuliers est un fermé non vide du cercle de convergence.

3. Bonus. Soit la série entiere ) 2(2") de rayon de convergence R et de somme f.
(a) Montrer que R = 1 puis que, pour tout entier n > 1, et tout z € D(0,1),on a f (z(zk)) = f(z) —
( 2 2<’€—1>>
z+z04+---+z .

(b) Montrer que le point zy = 1 est un point sigulier, puis que toute racine 2*-iéme de 1’unité est un point
singulier. En déduire que tout point du cercle de convergence est un point singulier.

S

1.3 Principe des zéros isolés

Exercice 16
Décrire les fonctions analytiques dans le disque D; (1) := {z € C||z —1 |< 1} satisfaisant pour tout entier n > 2 :

Lfl+i)=1+1

2 f(1+3) =

3 FO+E) = (14 5k) =4
4. f(1—|—%)=e_”.

Exercice 17 1. Discuter I’existence et "unicité d’une fonction holomorphe f : D(0,1) — C vérifiant, pour
tout n > 2, les égalités :
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@ f(;)=1-3
® fG) =/ =%
© £ (3) = i
@ f(3) =7
2. Méme question pour une fonction holomorphe h : D(1,1) — C, avec les égalités :
@ h(i)=0,

® () = &

Exercice 18
Soit f une fonction analytique non identiquement nulle sur U ouvert connexe de C et soit K un compact de C inclu
dans U. On note Ky = {x € K/f(x) = 0} les points d’annulation de f sur K. Montrer que K est fini.

Exercice 19

Soit 2 un ouvert connexe non vide de C. On suppose que f, g sont analytiques sur {2 telles que f(z)g(z) = 0, pour
tout z € 2. Montrer que soit f = 0 soit g = 0 sur ). Trouver deux fonctions lisses f, g : R — R telles que fg =0
mais ni f, ni g est identiquement 0.

Exercice 20
Soit f : C — C une fonction analytique ayant la propriété qu’en tout point zg € C, son développement en série

entiere -
- f " (ZO) n
f(Z):ZT(Z*ZO)
n=0
posseéde au moins un coefficient nul =0 (z5) = 0. Montrer que f est un polynéme.
Indication : Employer un argument de dénombrabilité.

1.4 Logarithmes complexes

Exercice 21 - Logarithme(s) complexe
Soit € inclus dans C*. On appelle logarithme sur §2 une fonction continue sur 2 vérifiant exp(f(z)) = idq.

1. On appelle C~ I’ensemble des nombres complexes privé de la droite des réels négatifs ou nuls. On définit la
fonction log sur C~ par
log(z) = In(|2]) + i arg(2)

ol arg(z) est ’argument de z compris entre | — 7, 7[. Montrer que log(z) est un logarithme. On 1’appelle
détermination principale du logarithme.

2. Montrer qu’il n’existe pas de logarithme sur le cercle unité.
Montrer que la différence entre deux logartihmes est égale a 2kiw, avec k € Z.

W

. Montrer qu’un logarithme sur €2 est holomorphe et de dérivée i

Dans de nombreux cas, on utilisera la détermination principale du logarithme, mais il est parfois plus pratique
(voir les TDs suivants) de travailler avec une autre détermination : il est important de donner la détermination que
vous utilisez quand vous manipulez un logarithme.

Il est également nécessaire de donner une détermination du logarithme quand on traite de puissance de nombre
complexe. Par exemple, si A € C et log est la détermination principale, on a

22 = exp(\log(2))

Exercice 22
1. Rappeler la définition de la détermination principale du logarithme complexe, que 1’on notera désormais log,
son domaine de définition U et son ensemble image.
2. Déterminer log(1 + ), log (63”/4) et log (64”/3).
3. Soient z1, 29 € U tels que z129 € U. Comparer log (z122) et log (z1) + log (22).

4. Soit o € C. Proposer une définition de 2 pour z € U. Comparer alors 2%, (22)Z et (zl) pour z = e%7/4,
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Exercice 23
1. Rappeler le développement en série entiere de la détermination principale du logarithme au voisinage de
zp = 1, et son rayon de convergence.
2. Quel est le domaine de définition U de la fonction holomorphe / : 2z — log 1= +z ? Le dessiner.

3. Soit h(z) = 307 anz™ le développement en série entiére de h a I’origine.

(a) Déterminer a priori son rayon de convergence.
(b) Déterminer les (a,,).

1.5 Intégrales curvilignes

Exercice 24 - Longueur d’un chemin
Dans R” euclidien (et donc dans C ~ R? ), on sait naturellement définir la longueur d’un segment, et donc
d’une ligne polygonale. Soit v : [0,1] — R™ une courbe (application) continue. Pour une subdivision o =
(0<typ<--- <ty <1)de][0,1], on introduit la longueur V, () = Z?gol I (ti+1) — v (¢;)|| de laligne polygo-
nale inscrite dans y correspondant  cette subdivision. La longueur de -y est alors définie par L(y) = sup, V() €
[0, o0, le sup étant pris sur toutes les subdivisions de [0, 1] (faire un dessin).

On suppose que 7 est de classe C' et on veut montrer 1’égalité L(~y fo I ()| dt.

1. Montrer I’égalité L(~y) < fo Il ()] dt.

2. Montrer I’inégalité inverse L(y) > fo I ()| dt.
Utiliser I’uniforme continuité de la dérivée ' sur [0, 1], et la convergence des sommes de Riemann Z?:_Ol Il (t:)]]
vers fo I/ (t)] dt, lorsque le pas de la subdivision tend vers 0.

Exercice 25
Soit 7y une courbe lisse dans C paramétrée par z(t) : [a,b] — C. Soit v~ la courbe orientée dans le sens inverse.
Montrer que pour toute fonction continue f sur -y, ona:

[ #ez == [ s

Exercice 26 1. Intégrer la fonction z — Z — 1 sur le bord orienté du triangle 7' de sommets (0, 2, 2i).
2. Soient zg = —1, 21 = 2 + i et vy le segment de droite reliant 2z a z;. Calculer fv 22dz.

Exercice 27
Soit £ € Z. Intégrer la fonction fi, : z — 2" sur le cercle unité, parcouru dans le sens trigonométrique. Pour
quelles valeurs de & la fonction f, a-t-elle une primitive sur C* ?

k



Chapitre 2

Théoremes de Cauchy et applications

2.1 Lemme de Goursat

Exercice 1 - Lemme de Goursat
Soit f une fonction a valeurs complexes, définie sur un ouvert {2 de C. Si f est dérivable au sens complexe en tout
point de €, et si A C €2 est un triangle (fermé), alors

f(z)dz=0
OA

1. On suppose que f est dérivable au sens complexe en 2y € {2, et on pose
f(z) = f (20) + (2 — 20) f' (20) + |2 — 20| €(2).

Montrer que pour tout triangle A C 2 contenant 2,

< 3diam(A)? max |e(2)]
zEA

f(z)dz

A

2. Soit A C 2 un triangle. Montrer qu’il existe un triangle A’ C A tel que diam (A’) < diam(A)/2, et

fle)dz| >

oA

f(z)dz

oA

3. En utilisant les deux questions précédentes, démontrer le Lemme de Goursat.

4. Montrer que le résultat reste vrai si 1’on suppose seulement que f est localement bornée sur € et holomorphe
sur Q\{w} pour un certain point w € ).

Exercice 2 - Cas particulier du théoréme de Goursat

Dans un ouvert8 ffl C C, soit une fonction holomorphe f qui est continiiment différentiable, i.e. (z,y) — % (z,9)
et (z,y) — 5y
T = T C € un triangle fermé non aplati. Dans cet exercice nous donnerons une autre preuve du théoréme de
Goursat

(z,y) sont continues (ce qui n’est pas demandé dans la définition de I’holomorphie). Soit aussi

0= f(z)dz
orT

avec cette hypothese supplémentaire. Procéder comme suit :

1. Etudier d’abord ce cas spécial du théoréme général de Riemann-Green : Pour une fonction réelle P €

¢1(Q,R),
[ ()

en supposant le domaine G ot I’on intégre de la forme "sandwich entre deux graphes" :

G={(z,y) eR*:a<a<b [ (z)<y< fi(z)}

avec —o0o < a < b < 400, avec deux fonctions f_, f, continues ‘ﬁplm définies sur [a, b] satisfaisant f_ <
fysur]a,bl.
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2. Déduire que pour deux fonctions réelles P,Q € €*(€, R) I'intégrale suivante sur le bord du triangle est
égale a une intégrale dans I'intérieur :

_ [ (.9 0@
/8T(de—|-Qdy) —/T< a9 + ax) dzdy.

Indication : Commencer avec le cas () = 0 et utiliser le résultat de (1). Ensuite, traiter le cas P = 0 a I’aide
d’un changement de variable.

3. Compléter la preuve du théoréme de Goursat avec cette hypothese supplémentaire que f € €1 (€2, C).

2.2 Calculs d’intégrales

Exercice 3
Soit a > 0. Pour R > 0, soit vy le rectangle orienté de sommets —R, R, R + ia, —R + ia.

1. Déterminer I'intégrale [ e dz.

2. Montrer que la fonction x € R — cos(ax)e

—X

* €Rest intégrable, et calculer son intégrale.

Exercice 4

Un théoreme de Weierstrass énonce qu’une fonction continue sur [0, 1] peut étre uniformément approximée a
volonté par des polyndmes réels. Montrer que les fonctions continues sur le disque unité D ne sont pas toutes
uniformément approximables par des polyndémes holomorphes P(z) € Clz].

Indication : Essayer d’approximer f(z) = z et calculer |, op 247

Exercice 5
Soit vy : I = [a,b] — C un chemin dans C* donné par (t) = p(t)e®®), avec p et 6 deux fonctions C* sur I, p ne
s’annulant pas.

1. Montrer que

S

2. Montrer que si 7 est un lacet (y(a) = (b)), alors 5 fw d—; est un entier. A quoi correspond t-il?

Exercice 6 - Le Lemme de Jordan
Soit € > 0. Soit f : U — C une fonction continue définie sur

U={z€C,Imz>0et|z]| >e.}

1. Pour R > ¢, on introduit le chemin vz : t € [0, 7] — Re®* € C. Dessiner U et yg.
2. On suppose que lim_ ¢y, |2|—o0 | f(2)| = 0. Montrer alors que, pour tout réel @ > 0, on a

lim e f(2)dz = 0

R— R

On rappelle I'inégalité sin § > 260/, que 1’on redémontrera, valable pour 6 entre 0 et 7/2.

Exercice 7 - Intégrale de Fresnel - V1
Le but de I’exercice est de déterminer la valeur de f0+°o cos (tz) dt et de f0+oo sin (t2) dt (sous réserve d’exis-
tence).

. . 42 . , .
1. Monter qu’il suffit de connaitre la valeur de 0+°O e~ """ dt (sous réserve d’existence).

On définit A = 0, B = Ret C = R(1 + 1) trois points dans le plan complexe, on note 7" le triangle orienté
(ABC) et 9T son bord. Soit f(z) = exp (—2z?)

2. On admet ici que f admet une primitve holomorphe sur C. En déduire la valeur de Ig = [, or f(2)dz
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3. En considérant des courbes C! entre A et B, B et C, C' et A, montrer que
Ir=Ar+ Br+Cg

ou Ag, B, et Cr sont 3 intégrales complexes.
4. Montrer que
R
2 2
lim e Bt =0
R—+o0 0
. N _ig? .

5. En déduire, en passant a la limite R — 400, que f0+oo e~ dt existe et sa valeur.
6. Conclure.

Exercice 8 - Intégrales de Fresnel - V2

1. Esquisser le graphe de la fonction x € [0, 00 [% sin (:z:z) € R. Est-elle intégrable ? On pourra effectuer le

changement de variables v = 22

On va cependant montrer que I’intégrale fooo sin (x2) dx est semi-convergente, c’est-a-dire que la limite

I, =limg_, o fOR sin (332) dx existe. Pour chaque R > 0, on considére un lacet vz d’image le bord orienté
du secteur du disque D(0, R), de sommets (O, R, Re”“).

2. Dessiner g et déterminer la valeur de I’intégrale va e dz.

3. En déduire que I, est bien définie, et la calculer. (On obtient également la valeur de I’intégrale semiconver-
gente I, = [ cos (z%) dx).

Exercice 9 - Noyau de Poisson
1. Soit ¢ € Ctel que 0 < |¢| < 1. Montrer les identités

Re<1+¢>_ S 1

1-C¢) 1-2ReC+[C? 1-¢ 1-1/C
2. En déduire, pour |w| = 1 et 0 < |z| < 1, I'identité —— = L Re (fﬁfi) + #1/2

3. Soit f : U — C, holomorphe sur un ouvert U contenant le disque unité fermé {|z| < 1}. Soitc¢; = {|z| = 1}
parcouru dans le sens trigonométrique. Montrer que, pour |z| < 1:

1 w42\ dw
= — R _—
/() 2w /cl f(w) e(w—z) w
4. En déduire la formule de représentation u(re'') = OQW u(eia)mdﬂ pour la fonction harmo-

nique © = Re f sur le disque unité ouvert.

2.3 Inégalités de Cauchy

Exercice 10
Soit f : U — C une fonction holomorphe définie sur un ouvert U contenant le disque fermé {|z| < 1}. Soit
M = sup|, 1 |f(2)]-

1. Soient 0 < r < 1et|z| < r. Montrer que |f(z) — f(0)] < M.

2. On suppose que a = | f(0)| # 0. Montrer que f(z) # 0ssi [2] < 3%

Exercice 11 - Théoreme de Liouville
Soit f une fonction entiére.

1. Soient a # b deux complexes, et R > sup(|al, |b]). Evaluer I’intégrale

B o,
I(R) = /c G_az—b"

ou Cr désigne le cercle de centre O et de rayon R parcouru dans le sens trigonométrique. On utilisera la
décomposition en éléments simples de la fraction rationnelle z — m
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2. On suppose maintenant que f est bornée. Montrer alors que f est constante.

On verra en cours une autre démonstration, également basée sur la formule de Cauchy.

Exercice 12 - Théoreme de d’Alembert-Gauss - V1
Soit P(2) = 2" + a,_12" "1 +--- 4+ a1z + ag un polyndme unitaire de degré n > 1 a coefficients complexes. On
veut montrer que P admet au moins un zéro sur C.

1. Montrer qu’il existe R > 0 tel que |P(z)| > |2|™/2 pour tout complexe z tel que |z| > R.

2. On suppose, par I’absurde, que P ne s’annule pas et on introduit la fonction entiere f = 1/P. Déduire de la
formule de Cauchy que f(0) = 0, puis conclure.

Exercice 13 - Formule de Cauchy sur les dérivées
Soient f : U — C avec U un ouvert convexe, et -y un lacet tracé dans U.
1. Rappeler I’énoncé de la formule de Cauchy pour f.

2. En déduire la formule de Cauchy pour ses dérivées, en utilisant le théoreme de dérivation sous 1I’intégrale.
Une autre preuve sera donnée en cours.

Exercice 14 - Fonctions a croissance polynomiale

Soit f : C — C une fonction enti¢re. On suppose qu’il existe un entier m € N et une constante ¢ > 0 telle que
|f(2)] < ¢|z|™ pour tout z € C tel que |z| > 1. Montrer alors que f est une fonction polynomiale de degré au plus
m.

2.4 Principes du maximum

Exercice 15 - Principe du maximum
Soit f une fonction holomorphe d’un ouvert 2 et soit a € Q et r € R tels que le disque fermé D(a, ) soit inclus
dans €.

1. Montrer que

+00 1
fla+re) = zo: Hf(") (a)rmein?
puis que
1 27 v 12 400 1 ) 2 )
o ), 1 (atre?)] d9=202’n!f (a)) 7

2. En déduire le principe du maximum (ou plutdt, I’'une des nombreuses versions de ce principe) : Soit {2 un
domaine et f une fonction holomorphe sur €. Si | f| admet un maximum local, alors f est constante sur §2.

3. Retrouver le théoréme de D’ Alembert Gauss a 1’aide du principe du maximum.

Exercice 16
Soient f, g et h des fonctions holomorphes sur un ouvert connexe U contenant le disque unité fermé.

1. Onsuppose que f et g ne s’annulent pas, et que | f| = |g| sur le cercle unité. Montrer qu’il existe un complexe
A € C de module 1 tel que f = Ag.
2. Le résultat ci-dessus persiste-t-il si f et g peuvent s’annuler ?

3. On suppose que h : U — C holomorphe ne prend que des valeurs réelles sur le cercle unité. Montrer que h
est constante.
On pourra introduire la fonction f = ",

Exercice 17
Soient f1, fo.....fm et g m+ 1 fonctions holomorphes dans un domaine U de C, avec g non identiquement nulle.
On supose que |g| = Z;’;l |f;| dans U.

1. Montrer qu’il existe des fonctions w1, us .. . u, holomorphes dans U telles que f; = ujget 3270 |uj| =1

2. Soit a € U. Exhiber des nombres complexes €; de module 1 tels que 1 = Z;’;l gju;j(c). En déduire que
1=3""" eju; dans U
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3. Soit wy,ws . ...wy, des nombres complexes tels que 1 = >°7" | |w;| = 37", w;. Montrer que si wy # 0
alors w; = Ajw; avec A; > 0.
4. En déduire que les fonctions u; sont constantes dans U. En déduire une relation entre g et f.

Exercice 18 - Lemme de Schwarz
On note D le disque de centre 0 de rayon 1 . Soit f une fonction holomorphe sur D vérifiant f(0) = Oet|f(z)| < 1
pour z € D.

1. Montrer que | f(z)| < |z| pour |z| € D (on pourra considérer la fonction g(z) = f(2)/z2).
2. Montrer que | f'(0)] < 1.
3. Montrer que si | f'(0)] = 1 ou s’il existe z € D non nul tel que | f(z)| = |z| alors il existe A € C vérifiant
[A\| =1et f(z) = Az pour z € D.
Exercice 19
Soient U C C un ouvert connexe, f : U — C holomorphe et zy € U. Montrer que, si Re f ou bien Im f admet

un maximum ou un minimum local en zg, alors la fonction f est constante. On pourra déduire ces résultats du
principe du maximum, ou bien du théoreme de I’application ouverte.

Exercice 20 - Théoréme des trois droites de Hadamard
Soit h € C°(B) N O(B) une fonction continue sur la bande fermée B, et holomorphe sur la bande ouverte B =
{z € C,0 < Rez < 1}. On suppose que h est bornée sur B. Soient My, My > 0 tels que |h(z)| < My lorsque
Rez =0et|h(z)| < M lorsque Re z = 1.

On veut montrer qu’on a, pour tout ¢ € [0, 1], la majoration |h(z)| < My~ *M{ lorsque Re z = t.
Soit ¢ > 0. On introduit la fonction définie pour z € B par h.(z) = M{ ™' M Zes*(=Dh(2).

1. Vérifier que I’expression définissant h. a bien un sens.

2. Montrer que |h.(z)| < 1lorsque z € Bet | Im z| est grand.

3. En déduire que |h.| < 1 pour tout z € B.

4. Conclure.

Exercice 21
Soit f une fonction holomorphe sur D(0, 1). On appelle diametre de f la quantité

d=sup |f(z) = f(w)|
w,z€D(0,1)
éventuellement infinie.
1. Démontrer que 2f'(0) = 5 [c:0.) L= gy, pour 7 € (0,1).
2. En déduire que 2| f'(0)| < d.

2.5 Convergence uniforme d’une suite de fonctions holomorphes

Exercice 22
Soient U un ouvert connexe de C et f une fonction holomorphe sur U telle que la suite f, = f(™) converge
uniformément sur tout compact de U. Que peut-on dire de la limite g de la suite (f,,),, ?

Exercice 23
Soit f,, : U — C une suite de fonctions holomorphes. Soit D(a,r) C U un disque fermé inclus dans U.
1. On suppose que chaque f,, s’annule au point a(n € N). Montrer que les fonctions définies pour z € U\{a}
par g, (z) = fz”f(za) se prolongent en des fonctions holomorphes g,, : U — C.
2. On suppose maintenant de plus que la suite ( f,,) converge uniformément vers 0 sur U.
(a) Montrer alors que la suite (g,,) converge uniformément vers 0 sur U.

(b) Montrer que la suite (g/,) converge uniformément sur D(a, ), et déterminer sa limite.

Exercice 24

Soit © un ouvert connexe de C et soit ( f,,) une suite de fonctions holomorphes dans €2 qui convergent uniformément
sur tous les compacts de €2 vers f (f est donc holomorphe). On suppose que les (f,,) ne s’annulent pas sur (2 et on
veut prouver que f ne s’annule pas ou f est identiquement nulle. On suppose f non identiquement nulle et on fixe
a € Q.
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1. Justifier existence d’un réel r > 0 tel que D(a,r) C Q et f ne s’annule pas sur le bord du disque D(a, ).
2. Justifier I’existence de € > 0 tel que, pour tout z € dD(a, 1), |f(2)| > €.

3. Justifier I'existence de N € N tel que, pour toutn > N et tout z € dD(a,r),|fn(2)| > /2.

4. En déduire que | f,,(a)| > &/2 puis conclure.

Exercice 25 - Théoréme de Montel version faible
Soient U un ouvert de C et (f,,) une suite de fonctions holomorphes qui convergent simplement sur U vers f. On
suppose que (f,,) est uniformément bornée (ie il existe C telle que Vz € U,Vn > 0, |f.(z)| < O).

1. On fixe K un compact de U et z9 € K,r > 0tel que D (z,r) C U. Montrer qu’il existe une constante
M > 0 telle que, pour tout z € D (z9,7/2), 0n a

[fn(2) = fm(2)| < M [fn(w) = fom(w)] dw

C(zo0,m)
2. En déduire que, pour tout £ > 0, il existe p = p (zq) tel que, pour tout n, m > p(29), on a

sup |fn(2) = fm(2)] < ¢
z€D(z0,m/2)

3. Conclure que (f,,) converge uniformément vers f sur K.

Exercice 26
On considere le produit infini

f(z) = ﬁ (1 +z2"')
n=0

1. Montrer que ce produit définit une fonction f holomorphe sur le disque unité D.
2. Montrer que Vz € D, f (2%) = f(2)/(1 + ).
3. En déduire que Vz € D, f(2) =1/(1 — 2).



Chapitre 3

Homotopies, Séries de Laurent, Fonctions
méromorphes

3.1 Homotopie

Exercice 1 - Existence (ou non) de primitives
Soit f: 2z — 1/(2(z — 1)).
1. Déterminer la valeur des intégrales fy f(z)dz, ot y1 = ¢(2,3) et v2 = ¢(2,3/2) sont les cercles de centre
2 et de rayons respectifs 3 et 3/2, parcourus dans le sens trigonométrique.
2. La fonction f admet-elle une primitive sur C\{0,1} ?
3. Soit U = C\[0, 1] le plan privé du segment [0, 1] C R.
(a) Soit v un lacet tracé dans U. Montrer 1’égalité ind (-, 0) = ind(+, 1). On pourra étudier Iapplication
t €[0,1] — ind(v,t) € Z.
(b) Montrer que la restriction f;; de f a cet ouvert y admet une primitive F' : U — C.

(c) Expliciter une telle primitive F' a I’aide de fonctions usuelles. On vérifiera que I’expression proposée
a bien un sens.

Exercice 2
On veut montrer qu’il n’existe pas de fonction entiere f : C — C telle que f o f = exp. On procede par I’absurde,
et on considére une telle fonction.

1. Montrer que C* C f(C), puis en déduire 1’égalité f(C) = C*.

2. Montrer que f posséde un logarithme g : C — C.

3. Montrer qu’il existe une constante ¢ € C telle que (g o f)(z) = z + ¢ pour tout z € C. On pourra utiliser la
relation fonctionnelle e9 o f = exp.

4. En déduire que f serait injective, puis conclure.

Exercice 3
Soit f : U — C une fonction holomorphe définie sur un ouvert connexe U. On suppose que U contient le disque
unité fermé, et que f ne s’annule pas.

1. Montrer qu’il existe deux points distincts z; et zo sur le cercle unité pour lesquels |f(0)| = |f (z1)] =
| f (22)].

2. Le résultat persiste-t-il si f peut s’annuler ?

Exercice 4
Soient f, g deux fonctions entieres.
1. On suppose que, pour tout z € C, on a I’inégalité stricte | f| < |g|. Que dire de f/g?

2. On suppose f non constante. Montrer que I’image f(C) C C est dense. On procédera par contradiction, en
supposant que le disque D(a,r) ne rencontre pas f(C).

Exercice 5 - Formule de Cauchy pour f de classe C'
L’ objectif de cet exercice est de donner une autre preuve de la formule de Cauchy, pour une fonction holomorphe
dont on sait déja que sa dérivée est continue.

Soient U C C un ouvert et f : U — C holomorphe. On suppose que f est de classe C, ¢’est-a-dire que sa
dérivée f’ : U — C est continue.

15
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1. Soit T : (s,t) € [0,1] x [0,1] — ~5(t) € U une application de classe C?. On suppose que, pour tout s,
le chemin 74 : [0,1] — U est un lacet i.e. que 75(0) = 75(1). Montrer que la fonction I : s € [0,1] —
fy f(2)dz est constante. On pourra chercher a dériver sous le signe somme.

2. Soit D (zp,7) C U un disque fermé. Déduire du (1) qu’on a pour tout z € D (2o, r)

=g [

= 2ir (z0,r) W— 2

Utiliser (1) pour passer de 1’intégrale sur le cercle C' (zo, ) & une intégrale sur un cercle C(z,¢) avec € > 0
petit.

Exercice 6
Soit f une fonction holomorphe de U dans U avec U domaine de C. On suppose que f vérifie f o f = f. Montrer
que f est constante ou que f est I’application identité.

Exercice 7

1. On considere la fonction f(z) = exp (i) . Donner la nature de la singularité en 1 de la fonction. La fonc-

tion est-elle méromorphe sur C ? Calculer le développement en série de Laurent de la fonction en puissance
de z — 1 dans C/{1} et vérifier la nature de la singularité en 1.

2. Donner le développement en série de Laurent en 0 de la fonction g(z) = exp (z + %)

Exercice 8
Soit f : U — C* une fonction holomorphe définie sur un ouvert connexe, et ne s’annulant pas.

1. Soit~y : [0,1] — U un lacet. Montrer que

1 orre,
QiWL f(z)d €2z

On pourra introduire la fonction A : ¢ € [0, 1] — exp (fv([O 1) %dz) eC.

2. Montrer que f admet un logarithme g : U — C* holomorphe (i.e. f = exp og) si et seulement si on a, pour

tout lacet tracé dans U, I’égalité
/
/ T
5 f(2)

3. Soit £ > 2. On suppose que f admet une racine k-ieme holomorphe i : U — C*. Montrer qu’on a alors
pour tout lacet tracé dans U :
1 [

2imw /., f(2)

4. On suppose que f vérifie la condition précédente pour un entier k > 2.

dz e kZ

(a) On fixe (o € U. Soient ¢ € U et un chemin ¢, C U joignant (y a ¢. Montrer que la quantité

H(¢) =exp (% ch f7/> ne dépend pas du choix du chemin c.

(b) En déduire que f admet une racine k-ieme holomorphe i : U — C.

5. (a) Montrer qu’il existe une fonction holomorphe i : D(0,1) — C telle qu’on ait 1’égalité ezl—1 = h(zz)
pour tout 0 < |z| < 1. Que vaut ~(0) ?

(b) La fonction f : z € D*(0,1) — e* — 1 € C admet-elle un logarithme sur le disque unité pointé
D*(0,1) = D(0,1)\{0}?
6. Soit k > 2. A quelle condition sur I’entier relatif p € Z la fonction z € C* — zP € C admet-elle une racine
k-éme holomorphe ?

3.2 Séries de Laurent

Exercice 9
Soit la fraction rationnelle f : z — 1/((z — 1)(z — 2)).
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. Déterminer les développements en série de Laurent de la fonction z — 1/(1 — z) sur le disque unité D(0, 1)

ainsi que sur 1’anneau A(1, co).

Déterminer les développements en série de Laurent de f sur le disque D(0, 1) ainsi que sur chacun des
anneaux D(1,2) et D(2, c0).

Exercice 10
Soit la fraction rationnelle f : z — 1/(z(z — 1)).

. Déterminer le développement en série de Laurent de la fonction f sur chacun des anneaux A(0,1) et

A(1, 00).

2. Déterminer les résidus res (f,0) etres (f,1).

»

(a) Donner le développement de Laurent de f sur I’anneau A;(0,1) = {0 < |z — 1| < 1}. On pourra
poser w = z — 1.
(b) Retrouver la valeur de res(f,1).

Exercice 11 1. Démontrer que ’expression z — e'/(22) ¢ définit une fonction holomorphe f : C* — C.

2.
3.
4.

3.3

Déterminer la nature de la singularité en I’ origine.
Ecrire le développement de Laurent de f sur C*, et déterminer son résidu en 1’origine.
Pour quelles valeurs de ¢ € C la fonction z € C* — f(z) — ¢/z admet-elle une primitive sur C* ?

Fonctions méromorphes

Exercice 12 - Singularités isolées
Pour chacune des expressions suivantes, déterminer I’ouvert maximal sur lequel elle définit une fonction holo-
morphe. Discuter la nature de chaque singularité. Lorsqu’il s’agit d’un pdle, indiquer son ordre.

1.

N0 RE RN

4
zZ
27 Gifie?
227772
sinz °
27— 1f'cosz’
sin z
1 1
z— er—1  z—2in’
z — cos(1/z2),
z — 1/ cos z,

z —r

z —

1
cos(1/z)"

Exercice 13 1. Soient f : U — C une fonction holomorphe, a € U un pointde U, et k € N*.

2.

(a) Montrer que I’expression z — (foz))k définit une fonction méromorphe g sur U.

(b) Exprimer le résidu Res(g, a) en fonction des dérivées de f au point a.

Montrer que chacune des expressions suivantes définit une fonction méromorphe sur C dont on déterminera
les pdles. On précisera I’ ordre et le résidu pour chaque pole :

(@) z— =77
22+z+2

(b) z— (z—2)(2—1)2

O

(d) z—1/sinz

(e) z+— —SHZ‘EZ

(f) PN e” sinh 2z

24
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Théoreme des résidus et applications

4.1 Méthodes de calcul d’intégrales et résidus

Exercice 1 - Calculs pratiques de résidus
Démontrer les formules de cours suivantes :
1. Siwvg(f) > —1, alors
Res(f;a) = lim(z — a) f(2)

z—a

2. Si a estun pole d’odre k de f alors

Res(f10) = gy P 0a) F(2) = (2= )9
3. Sivg(f) > 0etvg(g) =1 alors
(f)_ f@
R (5i) = Sy

4. La fonction f’/f est méromorphe. Ses pdles sont simples (ce sont les zéros et les pdles de f ) et on a

s (£:0) - i)

Exercice 2
Calculer, quand c’est possible, les résidus suivants :

1. Res(f; (1 +1)), ol f est entiere.
f(w)

w—z"

3. Les résidus aux pdles de

2. Res (g, z), 00 g:w

224+z+41

(RRRNTERSTY
4. Res (61/2;0).

Exercice 3
Soit R > 0 avec R différent de 1/2 et de 2 . On note g, le cercle de centre O et de rayon R parcouru dans le sens
direct. Calculer, selon les valeurs de R 1’intégrale

/ dz
h 222 — 5z +2
Exercice 4

Soit, pour @ € C et r > 0 le lacet c(a,r) : t € [0,27] — a + re't € C.
1. Dessiner les lacets sur lesquels intégrer, puis calculer les intégrales :

2 2
Cos 2 e’ e* Cos z
dz,/ dz,/ dz,/ dz
/c(o,l) z c(24i,2) Z — 2 e(3+i,1) 2 — 2 r 2 (22 +38)

ol R désigne le bord orienté du rectangle de sommets [1 +¢,—1 +i,—1 —4,1 —14].

2. Méme question pour :

e? 1 1 z
—dz,/ —dz,/ 7512,/ 4
/c\(()A,l) 23 c(1,5/2) (2 =4 (z +1)* c(i3/2) (22 +4)° c(0,3) 22 +4

18
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3. Soienty; : t € [0,7] — 2¢® € C,yp : t € [m,27] — 2e" € Ceto :t € [-2,2] — ¢t € C. Dessiner ces

trois chemins, puis estimer les intégrales f,ﬂm mrpdzet f'yg*a\/ 7747 En déduire

/ -
¢(0,2) 22 +1

Exercice 5
Soient P, ) € C[Z] deux polyndmes tels que deg Q@ > deg P + 2.
1. Soient aq,- - ,aq les zéros de Q. Exprimer, en fonction des résidus de la fraction rationnelle P/(Q en ces

points la valeur de [ (P/Q)(z)dz pour tout rayon r > sup |a;|.
2. Montrer alors que 221:1 res (P/Q,aj) = 0.

Exercice 6

On veut calculer I'intégrale I = [ s dt.
1

1+4+26°
dants. (On remarquera que o® = —1/« lorsque « est un pole de f).

2. Soit, pour 7 > 1, le lacet v, : t € [0, 7] — re‘t. Montrer que f7~ f(z)dz — 0lorsque r — oco. En déduire
la valeur de I.

1. Soit la fraction rationnelle f : z — Déterminer ses pdles, leur ordre, ainsi que les résidus correspon-

Exercice 7 - Fractions trigonométriques
Soit R = P/Q € R(X,Y) une fraction rationnelle telle que Q(x,y) # 0 si 22 + y? = 1. On considere alors

27
R(cosf,sin )do
0

27 —1 _ -1
/ R(cos@,sin&)dﬁz/ R<Z+Z ,Z u )dz
0 8D(0,1) 2 21 (¥4
/27r cos 0df
o a-+cosf

[oterin ()

ol log désigne la détermination principale du logarithme, et ot v : [0, 27r] — C est le lacet défini par v(t) =
1+ %e”. Donner le résultat sous la forme d’une série convergente.

1. Montrer que

2. Soit a > 1, calculer

Exercice 8
Calculer I’intégrale

Exercice 9 - Lemmes du petit et du grand cercles

1. (Lemme du petit cercle) Soient o, 8 € [0, 2] tels que o < f3, et pour tout r > 0, soit v, : [a, 5] — C le
chemin défini par v(t) = a + re®. Soit R > 0 et soit f : D(a; R)\{a} — C une fonction méromorphe en
a, et telle que v, (f) > —1. Montrer que

lim [ f(z)dz=(8— «a)iRes(f;a)
r—0 A

2. (Lemme du grand cercle) Soit Ry > 0 et 2 C C un ouvert tel que yr([a, B]) C Q pour tout R > Ry. Soit
f : © — C une fonction holomorphe. On pose

M(R) := sup {|f(2)| : z € yr(lo, B])}

et on suppose que M (R) = o () lorsque R — co. Montrer qu’alors,

lim f(z)dz=0

R—o0 YR



20 Chapitre 4. Théoreme des résidus et applications

3. Soit & €] — 1, 1[. Calculer 'intégrale

+o0 s
I:/ t ln(t)dt
0

t2—1

Indice : intégrer une fonction holomorphe bien choisie sur le contour représenté sur la figure ci-dessous.

Exercice 10 - Intégrale de Dirichlet - V1

On veut calculer I’intégrale semi-convergente J = lim,_, ffr Si;‘tdt.

Pour 0 < e < r, on introduit le lacet v = ¢ * ¢g * c3 * ¢4 concaténé des chemins ¢; d’image [e, r], ¢ d’image
le demi-cercle de rayon r dans le demi-plan supérieur, c3 d’image [—r, —¢] et ¢4 d’image le demi-cercle de rayon
€ dans le demi-plan supérieur, parcouru dans le sens inverse du sens trigonométrique.

1. Démontrer que I’expression f : z — ¢%* /2 définit une fonction méromorphe dont on déterminera les poles.
Dessiner le lacet .

2. Evaluer lim.,o4 [, f(z)dz.

3. Montrer que lim,_, | o f@ f(z)dz = 0.
4. Déterminer la valeur de J.

Exercice 11 - Intégrale de Dirichlet - V2
On rappelle que I’intégrale de Dirichlet est définie par

+oo ;
sin x
I= dx
O :,C

1. Montrer que cette intégrale est semi-convergente mais que la fonction

sinz _.» CEp
S7F n’est pas intégrable sur R .
2. Calculer I'intégrale a 1’aide du théoreme des résidus (on pourra considérer la fonction g : z +— % et deux

demi cercles de rayon R et 7, I’'un dans le demi-plan supérieur, 1’autre dans le demi-plan inférieur).

Exercice 12 - Indice
Soient 7 : [0,1] —]0,00[ et 6 : [0, 1] — R deux applications de classe C''. On introduit le chemin v : [0, 1] — C*
défini par y(t) = r(t)e??®,

. Calculer I'intégrale fﬁ/ dz

. Interpréter ce résultat lorsque -y est un lacet.

1
2
P dz N s . _ . P
3. En déduire fc €, oli ¢ désigne le cercle {|z — 1| = 3} parcouru dans le sens trigonométrique.
. . L. . . dz N L. _
4. Raisonner geqmetnquement pour intuiter la valeur de fc2 <=, ol ¢ désigne le cercle {|z| = 2} parcouru
dans le sens trigonométrique.

dz
z241°

5. Déterminer alors fcz
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Exercice 13 - Transformée de Laplace
Soit f une fonction intégrable sur [0, +oo]. Pour tout complexe z tel que Re(z) > 0, on pose

+oo
Lf(z) ::/0 e P f(t)dt

1. Montrer que £ est bien définie et holomorphe sur g = {z € C : Re(z) > 0}.
2. Soit

“+oo
A(f) = {s eR: / e S f(t)|dt < —|—oo}
0
o=o(f) :=infA(f),etsoitQ, := {z € C: Re(z) > o}. Montrer que £ f admet un unique prolongement
holomorphe sur €2, et déterminer ses dérivées a tout ordre.

Exercice 14
Soitm € N un entier et & € R un réels tels que n > 2 et —1 < a < n — 1. Calculer I'intégrale

+oo tot
I:/ dt
o Lt

Indice : intégrer une fonction holomorphe bien choisie sur le contour représenté sur la figure ci-dessous. L’angle
d’ouverture est 27 /n.

4.2 Résultats théoriques

Exercice 15 - Théoréme de Hurwitz

Soit U un ouvert connexe et (f,,) une suite de fonctions holomorphes sur U, qui converge vers f uniformément
sur tout compact de U. On suppose que f admet un zéro de multiplicité m en 2.

Montrer qu’il existe rg > 0 tel que pour tout 0 < 7 < ro, il existe N(r) tel que pour tout n > N(r), f,, a
exactement m zéros dans D (2o, ) comptés avec multiplicité.

Exercice 16 - Théoréme de Rouché 1. Soit U un ouvert contenant le disque D(0,7), et f et g deux fonctions
holomorphes sur U, telles que |f — g| < |g| sur le cercle C(0,r). Montrer que f et g ont le méme nombre
de zéros dans D(0, 7).

2. Montrer que toutes les racines du polyndme P(z) = 2° + 323 + 7 appartiennent au disque D(0, 2).
3. Déduire le théoreme de d’ Alembert du théoréme de Rouché.
4. Montrer que la fonction f : 2 — 220 4 1422 + 2 — 2 possede 17 zéros dans la couronne {1 < |z| < 2}.
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Exercice 17 - Théoreme d’approximation de Muntz
Le but de ’exercice est de montrer le résultat de densité dans les fonctions continues sur [0, 1] suivant :
Théoreme. Soit (/\j)j e+ une suite d’entiers positifs distincts, tendant vers +oo. Alors, le sous espace vectoriel

engendré par la famille {1,/ }j e~ estdense dans C([0, 1]) si et seulement si

~L_y
)\ o0

mM+

On pourra utiliser la conséquence du théoreme de Hahn Banach suivante :
Théoréme. Un point z d’un evn X appartient au sev engendré par Y = {y;} famille de X ssi pour toute forme
linéaire bornée ! qui s’annule sur la famille, [ s’annule aussi en z, i.e.

Vy; L(y;) =0=1(z) =0

1. (a) Supposons d’abord Z =1 /\ = +o00. Montrer que si [ est une forme linéaire continue bornée sur
C([0,1]) alors f(z) =1 (t*) est une fonction holomorphe bornée sur {f(z) > 0}.
(b) On définit By (2) = H;ro‘f z +§J et gn(z) = Bfﬁi). Montrer que g est bien définie, holomorphe et
bornée sur {R(z) > 0}.
(c) Conclure sur la premiere implication.
2. (a) Réciproquement, si +°° + < 400, 0n pose f(z) = ﬁnl ﬁ
Montrer que f est déﬁme et holomorphe sur {R(z) > 0} > —2, puis établir, pour {f(z) > —1},

1 [T f(—1+1is)
f(z)_—% oo —1+i3—zd8

(b) En remarquant que + = fol tw=1dt si {R(w) > 0}, trouver une forme linéaire continue bornée sur
C([0, 1]) non identiquement nulle telle que [ (¢t*7) = 0 et conclure.



Chapitre 5

Théoreme de I’application conforme de Rie-
mann

5.1 Automorphismes

Exercice 1 - Biholomorphie
Soit 2 et 25 deux ouverts de C. On dit que 21 et {25 sont biholomorphes si il existe une bijection holomorphe
entre 27 et {25 dont la réciproque est aussi holomorphe.

1. Montrer que C et D(0, 1) sont homéomorphes (on pourra considérer les applications z +—
2. Cet D(0,1) sont-ils biholomorphes ?

z 4
etz 17|Z|).

Exercice 2 - Automorphismes du disque

On appelle automorphismes de D (noté Aut(D) ) les applications biholomorphes de D dans D. Si a appartient &
D, on définit ¢, : D +— C par

_z—a

C l+az

Pa(2)

1. Montrer que ¢, est un automorphisme de D d’inverse ¢_,.
2. Montrer que les automorphismes de D s’écrivent Ay, avec a € D et |\| = 1.

Exercice 3 - Automorphismes du disque épointé

1. Soient a € D(0,1), ’ouvert V, = D(0,1)\{a} et f : V, = V,, un automorphisme.
(a) Montrer que f admet une singularité effacable au point a.
(b) Quels sont les points b € C pour lesquels V, U {b} C C est ouvert?
(c) Montrer alors que le prolongement holomorphe f : D(0,1) — C de f vérifie f(a) = a.
(d) Montrer que les automorphismes de V, sont les restrictions a V, des automorphismes h de D(0, 1) tels

que h(a) = a.
2. En déduire que les automorphismes de D*(0, 1) sont toutes les applications z — Az ol A est un complexe
tel que |A| = 1.

Exercice 4 - Automorphismes de C*
Soit f : C* — C* un automorphisme.

1. On suppose dans cette question que 1’origine est une singularité effacable de f. Décrire f.
2. On suppose désormais que 0 n’est pas une singularité effacable de f.

(a) Montrer que 0 est un pole d’ordre 1 de f.
(b) Montrer que g : z € C* — 1/f(z) € C* est un automorphisme de C*.

3. Montrer que les automorphismes de C* sont toutes les applications z — Az et z — \/z, o0 A € C*.

5.2 Fonctions holomorphes sur le disque

Exercice 5 - Fonction holomorphe du disque dans lui-méme
Soit f : D — D une application holomorphe, o D est le disque unité D = D(0, 1).

1. Soit m € N*. On suppose que f s’annule a I’ordre m a I’origine.

(a) Montrer qu’il existe une fonction holomorphe g : D — D telle que f(2) = 2™g(z) pour tout z € D.

23
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(b) En déduire que | f(z)| < |2|™ pour tout z € D, puis que | f™(0)| < m!
(c) Décrire f lorsqu’il existe un point 2o € D* tel que |f (z0)| = |20|™", ou bien lorsque | f™(0)| = m!
2. On suppose ici que f possede m zéros ay, - - - , a,, dans D, de multiplicités ky, - - - | ky,.

(a) Onrappelle que, pour a € D, h, : D — D désigne I’involution du disque telle que h,(a) = 0. Montrer
que |hy(2)| — 1lorsque |z| — 1.

(b) Montrer que la fonction g : z — f(z) H;n:1 (ha, (2)) i ge prolonge en une application holomorphe
g:D—C.

(c) Majorer |g| sur un cercle C(0,7) C D, puis montrer que g prend ses valeurs dans le disque fermé.

sz ez m kj
(d) Montrer alors I'inégalité | f(0)[ < [T;Z; |a;]™.

3. Bonus : Le lemme de Schwarz-Pick. Montrer, pour tout a, z € D avec a # z, les majorations

f(a);f(z)
1= f(a)f(z)

a—z

_ 1= lf@P

< o 1)<

1—az

On pourra introduire le point b = f(a) € D, et se ramener au cas olt @ = b = 0 en utilisant deux automor-
phismes du disque h, hg € Aut D.

Exercice 6 - Applications propres sur le disque
Soit D = D(0, 1). On dit qu’une fonction holomorphe f : D — D est propre lorsque I’image réciproque f~!(K) C
D de tout compact K C D est un compact de D. On veut décrire ces applications.

1. Montrer que f : D — D est propre si et seulement si |f(z)| — 1 lorsque |z| — 1.
2. Montrer qu’un automorphisme du disque h, » € Aut D est propre. Montrer également qu’un produit fini
2z €D = [I%_, ha;.x (2) € D est également propre.
3. On se donne désormais f : D — D propre.
(a) Montrer que f a un nombre fini de zéros dans D.
(b) En déduire qu’il existe un nombre fini d’automorphismes du disques tels que la fonction h : z € D —
f(z)/ (H;’:l ha; », (z)) € D soit propre, et ne s’annule pas sur le disque.
(c) Montrer alors que & est constante. On pourra penser au principe du maximum.

5.3 Suites de fonctions
Exercice 7 - Théoréme de Montel
Enoncer et rappeler la démonstration du théoreme de Montel.

Exercice 8 - Montel et zéros
Soit D le disque unité ouvert. On note, pour a € D

a—z

#alz) = 1—-az

1. Montrer que ¢, (9D) est inclus dans D

2. Onnote H* = {f € O(D), |[fllcoc =8sup,cp |f(2)] < oc}. Soit f € H® M = |f|c telle que
f(0) # 0. On note (z;) la suite des zéros de f, comptés avec multiplicité. Montrer qu’on peut écrire
§ = (T} =, ) gn avec llgall.. < M. En déduire que T}, || > |£(0)]/M

3. Soit f € H*°, non identiquement nulle. Montrer que

Y (1—lzl) <oo

Jj=1

4. Soit (fy,) une suite de O(D) telle que Vz € D, |f,(2)| < 1. On se donne une suite de points (z;) telle que
322 1 (1 —|z]) = oo. On suppose que pour tout 7, f,, (z;) — 0. Montrer que f,, tend vers 0 uniformément

Jj=1
sur tout compact.
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Exercice 9 - Cartan
Soit 2 un ouvert connexe borné de C, a € 2, f holomorphe sur €2, a valeur dans €2, telle que f(a) = a. On note
f" lacomposée f o fo..o fnfois.

1. Montrer que |f'(a)| <1

2. On suppose que |f'(a)| < 1. Montrer que f™ converge uniformément sur tout compact vers la fonction
constante égale a a.

3. Le résultat est t-il toujours vrai si {2 n’est plus borné ?

Exercice 10 - Osgood
U un ouvert de C, (f,,) suite de fonction holomorphe de U qui converge simplement vers une fonction f. On note
) la réunion de tous les ouverts de U sur lesquels f est holomorphe.

1. Montrer que €2 est ouvert

2. Soit D un disque fermé inclus dans U. Montrer a I’aide du lemme de Baire qu’il existe un disque ouvert D
dans D tel que f,, soit unformément borné dans O(D)

3. Conclure

Exercice 11 - Théoréme de dAlembert-Gauss
SoitP:z€C — ZZ:O az" € C une fonction polynomiale non constante (a,, # Oetn > 1).
1. Montrer que |P(z)| — oo lorsque |z| — oo.

2. En déduire que, lorsque K C C est compact, son image réciproque P~ (K) C C est également compacte.
On dit que P est une application propre.

3. Montrer alors que I'image P(C) C C est fermée.
4. En déduire que P admet au moins une racine complexe.
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Transformée de Fourier et fonctions holo-
morphes

Exercice 1 - Critére de Shannon 1. Soit f € S(R) (espace de Schwarz) telle que f esta support dans [-F,F],F €
R*% . Montrer que si 2F < 1 alors pour tout x € R, on a

+oo
fx)= Y fk)sinc(r(z - k))
k=—oc0
2. Rappeler le critere de Shannon et justifier le nom de I’exercice.

Exercice 2 - Densité des polynomes orthogonaux
Soit I un intervalle de R. On appelle fonction poids une fonction p : I — R mesurable, strictement positive et telle

que
Vn € N,/|x\”p(z)dx < 400
I

On note L?(I, p) I'esapce des fonctions de carré intégrable pour la mesure de densité p (par rapport a Le-
besgue), c’est a dire muni du produit scalaire

(f. 9)p = / F(@)g@)p()de

L2(I, p) est un espace de Hilbert.

Soit p une fonction poids. On suppose de plus qu’il existe a > 0 tel que :

/ealw‘p(x)dx < +o0
I

On cherche 2 montrer que (Vect {z — 2™, n € N})* = {0}

1. Soit f € L*(I, p). On définit ¢ par

Montrer que ¢ € L(R).
2. On pose pour w € R,

3) = [ fae o plo)ds
I
Montrer que QAS se prolonge en une fonction F' holomorphe sur

B, = {z €C,[3(2)] < %}

3. Calculer F(™)(0). En déduire que si f € Vect (z")" alors f = 0 (On pourra utiliser le fait que la transfor-
mée de Fourier est injective).

26
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Exercice 3 - Application de Paley-Wiener
Soit ¢ € C§°(R) une fonction lisse & support compact non nulle. Montrer que sa transformée de Fourier ¢ n’est
pas a support compact.

Exercice 4 - Paley-Wiener pour C(T)
Pour § > 0, onnote Bs = {z € C, |Im(z)| < ¢}. Soit f € C(T).
On va voir que f admet un prolongement analytique a une bande B;s si et seulement s’il existe ¢ > 0 tel que

cn(f) = O (e~clnh).
1. Supposons qu’il existe € > 0 et M > 0 tels que
VneZ, len(f)| < Me e

(a) Montrer que pour tout z € R, f(z) =Y, 5 cn(f)e™.
(b) Montrer que F(z) = >, .5 ¢n(f)e'™ converge uniformément sur tout compact de B..
(c) En déduire que f admet un prolongement analytique a B-.

2. Supposons que f admet un prolongement analytique a Bs. Notons

M = sup |G+ io)sful < 7+ 3, 1ol < 3

(a) Avec la formule de Cauchy, montrer que pour p € N, sup,c |f(p) (x)| < Mp! (%)p.
(b) En déduire que pour tout n # 0,

Mp! (2\P 2p
len ()] < — <5> < M exp (plog <6|n|>>
s

(c) En choisissant judicieusement p, en déduire que |c,,(f)] = O (e_s"”) poure = 5.

Exercice 5 - Espaces de Hardy du disque unité
Soit D le disque unité et p un réel strictement positif. On définit I’espace de Hardy HP (D) comme 1’espace des
fonctions holomorphes f € H(D) vérifiant

0<r<1

2m
sup / |f (reit) ’pdt < 400
0

- . 1/p
On pose || f]| := (Sup0<r<1 f02 ‘f (re') ‘p dt < +oo) . Montrer que H (D) est un espace de Banach pour
cette norme.

Exercice 6
On se place désormais sur I’espace de Hardy H?(D).

1. Définir a priori un produit scalaire sur cet ensemble.

2. Rappeler pourquoi on peut écrire que pour tout z € Df(z) =), anz™.

. , 1/2
3. Onpose M(r) = (i f02 | f (re™) |2 dt) . Exprimer M (r) en fonction des a,,. En déduire que M (r) est
croissante.
. NG
4. En déduire que | f|| = lim M(r) = (zn lan| ) :
r—

5. Montrer que H?(D) est en bijection avec [? (N et en déduire que H?(D) définit bien un espace de Hilbert.
6. Montrer que pour tout f € H2(D), on a

i
s s

7. Montrer que pour tout z € D, I’application de H?(D) dans C qui envoie f sur f(z) est continue.
8. En déduire que pour tout z € D, il existe K, € H?(D) telle que Vf € H?(D), f(2) = (f|K.). Donner une
expression de K.
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Exercice 7

Soient f € L?(R),a > 0, et B, = {z € C,|Im(z)| < a}. On va voir que les deux conditions suivantes sont
équivalentes :

(a) La fonction f se prolonge en une fonction F' holomorphe sur B, et telle que

sup / |F (2 + iy)|*dr < oo
lyl<a JR

(b) La fonction £ — e?/¢l f(¢) est dans L2(R).
1. Supposons (b). Montrer que
1 A .
F _ i€z
()= 5 | feresa

est un prolongement holomorphe de f sur B, qui convient.
2. Supposons (a). On se donne A > 0 et on définit

sin (22 ?
kx(x) = % </\(m2 )>

On définit pour z € Ret |y| < a, fy(x) = F(z + iy) et gr y(x) = Ga(z + iy) ou

Gi(z) = /IRF(Z —u)ky(u)du

(a) Montrer que Jry = kn/y-

(b) Montrer que pour tout £ € R, gy ,(£) = gx.0(&)e*.
(c) En déduire que pour [£] < A, fy(g) = f(&)e Y.

(d) Conclure en utilisant la formule de Plancherel.



Chapitre 7

Fonctions [' d’Euler et ( de Riemann

7.1 Fonction [' d’Euler

Exercice 1 - FonctionI' - V1
On définit la fonction I" par I'(z) = f0+°° t*~le~tdt.

1. Montrer que I" définit une fonction holomorphe sur €2y un ensemble ouvert a préciser.
2. Montrer que Vz € Qg on al’égalité I'(z + 1) = zI'(2).
3. En déduire que I" se prolonge en une fonction holomorphe sur C/{—N}.

4. Donner la nature des singularités aux points —IN de I" (essentielle, pdle, illusoire). Dans le cas des pdles, on
donnera I’ordre leur ordre. La fonction I' est-elle méromorphe sur C ?

Exercice 2 - Fonction I" - V2
Pour tout entier n € N*, on introduit ’ouvert U,, = {Rez > —n}.
1. Soient z € Cett > 0. Donner un sens a I’expression t~.
2. (a) Soit z € Uy. Montrer que I’intégrale fooo e~ 't*~1dt est absolument convergente. Elle définit donc une
fonctionI" : z € Uy — [ e~ "t*~*dt € C.
(b) Soit k € N*. Montrer que 1’expression 73 : z € Uy — flk/k e~ t*~1dt € C définit une fonction
holomorphe sur Uj.
(c) Montrer que la suite de fonctions () converge localement uniformément sur Up.
(d) Montrer alors que I" est une fonction holomorphe sur Uy.
(e) Exprimer, pour z € Uy, la dérivée I"(z) sous forme d’une intégrale.
Montrer que, pour tout z € Uy, on a I’égalité I'(z + 1) = 2I'(2).
. Montrer, pour tout n € N*, I’égalité I'(n) = (n — 1)!
. Montrer que, pourtous z € Upetn € N*, I'égalité I'(z +n) = (z +n—1)--- (2 + 1)2I'(2).
. Montrer alors que la fonction I" admet un unique prolongement méromorphe a C tout entier. On prolongera
succesivement la fonction I' & chaque ouvert U,, pour n € N*.

7. Déterminer les pdles de la fonction I'. Pour chacun d’entre eux, on précisera I’ordre et le résidu. Pour tout
n € N*, on trouve Res(I', —n) = (—1)"/n!

N Un AW
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Exercice 3 - Formule de Weierstrass
Soit z dans le demi-plan R(z) > 0.

1. Justifier que pourtout 0 < ¢t < nona

En déduire que

2. Montrer 1’égalité suivante

" t\" n*n!
1—— | t*ldt=
/0 ( n) 2(z+1)...(z+n)

3. En déduire que 1/T" est une fonction entiére et vérifie

+oo

L2z (zEn) Z\ _an
I‘(z)_ngr—ir-loo n*n! - H(l—i_ﬁ)e

n=1

avec v la constante d’euler
v:=lm(1+1/2+....+1/n—logn).

Exercice 4 - Formule de Stirling complexe
On note B(t) = t — [t] — 1/2 la premiere fonction de Bernoulli. On cherche a montrer la formule, vraie pour

s € C\(—=00,0]:

+oo
logI'(s) = (S - ;) log(s) — s + %log(%r) - /0 fj_tidt.

[

. Soit f une fonction de variable réelle C''. Montrer la formule de sommation d’Euler
n n 1 n
S0 = [ e+ 57+ 5O) + [ B 0
k=0 0 0

2. On rappelle qu’une primitive de log(x) est xlog(z) — x. Appliquer la formule précédente aux fonctions
f(t) =log(z + t) puis f(¢) = log(1 + t) et en déduire la formule

log (z(z+1)(z+n)

n!

) =(z+mn)log(z +n) — zlog(z) —n+ %(log(z +n) +log(z))

1 " 1 1
—nl 1 — =1 1 B(t — — | dt
nlog(n+1)+n 2og(n—i— )+/0 ()<z+t 1+t>

3. En admettant que C =1 + f0+°c %dt = %’ montrer la formule de Stirling complexe.

4. En déduire la formule de Stirling asymptotique

[(s) = s~ V/2e=*v/2r (1 Lo (1))

|s]

valable uniformément dans tout secteur S(6,¢) = {s =re’,r >cet —r+§ <0 <7 —6}.
5. En déduire ’estimation (uniforme dans toute bande a < o = Re(s) < b, quand |7| tend vers I’infini

Do +i7)] ~ (o) exp (2| 17

Exercice 5 - Formule des compléments
On cherche a montrer la formule des compléments, ie
Vz e C,R(2) €]0,1[= T'(I'1l-z) =

™

sin(mz)’
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1. Soit o €]0, 1 [. Montrer a I’aide du changement de variable (¢,s) — (u,v) = (s +t, %) que

1

+oo
Pl —a)=1I, = /0 mdv.

2. Calculer I, aI’aide du contour suivant.

3. Conclure.

Exercice 6 - Formule de multiplication

1. Montrer que
im ("!)222n — pl/2
n—-+oo (2n)!n1/2

On rappelle la formule de Stirling n! ~ (27)Y/2p"+1/2¢=",
2. On rappelle la formule (voir TD sur I')

+oo
1 z
viet, st [ (14 2) e
z e F(z) ze };[1 +n e

Montrer la formule de multiplication

D(2)D(z 4+ 1/2) = 71/2217221(22).

7.2 Fonction ( de Riemann

Exercice 7 - Fonction ¢ de Riemann
On introduit la fonction ( :

1. Montrer que ¢ est holomorphe dans I'ouvert Q@ = {z € C | Rz > 1}.
2. Soientp; =2,p2 =3,...,Pn,--. lasuite des nombres premiers. Montrer que Vz € €2, on a

(=] —

—Zz
n>1 1 Pn

On appelle ce produit le produit eulérien.
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3. Montrer que

¢(2)

ol A(n) = In(p) si n est une puissance d’un nombre premier et A(n) = 0 si n a au moins deux diviseurs
premiers distincts.

C/(Z) — Z )\(n)nfz
n>1

Exercice 8 - Calcul des ((2k)

Le but de cet exercice est de calculer ¢(2k) = ST

n=1

# pour tout k € N*.

1. Montrer que la fonction H(z) = 6231% est méromorphe sur C et caractériser ses singularités et les résidus
associés.
2. Soit N € N* et I'y le contour carré orienté dans le sens direct, aux points (N + ) (+1 = 4). Calculer
I'intégrale
1

= — H(z)z"%dz
271 T'n

n
en fonction de c¢; := Res (H z)z*%; 0). Justifier que limy o Iy = 0.

3. Les nombres de Bernouilli (B,,) sont définis par la série génératrice exponentielle

T f B,z"
et —1 n!

n=1

nenN*

Ceci signifie que B,, = F,,(0), ot F,,(z) := % (ﬁ) Exprimer cj en fonction d’un nombre de Ber-

noulli, et en déduire une expression de ((2k).

Exercice 9 - Fonction 6 de Jacobi

1. Formule sommatoire de Poisson : I’objectif de cette question est de montrer le résultat suivant Soit f : R — C
de classe C'! tel que Y f(z+n) et > f'(x +n) sont normalement convergentes quand x décrit [0, 1]. Alors
feLY(R)etona

00 +oo +oo
Z |f(k)] < 400, VzeR Z flz+n)= Z f(k)e%frkx.
k=—o00 = =
On pourra étudier la fonction g(x) = Y°/°° _ f(x + n) et calculer son k igme coefficient de Fourier, i.e.

1
cr = / g(x)e 2k qyg,
0
2. Calculer la transformée de Fourier de la Gaussienne, ie pour o > 0
+oo
I(x) — / 677\'&1526727;7Ttmdt'
— 00

On pourra dériver 1.
3. On définit la fonction 6 de Jacobi par

O(x) = Z "

nez

De méme, on définit la fonction © :]0, +o00 [— R, O(z) = 6§ (e~™) Montrer que O est bien définie et vérifie

1 1
Exercice 10 - Relation fonctionnelle de ¢
Soitt > 0ety)(t) = (0 (e~™) — 1) /2. On rappelle que 1’on définit la fonction I" par

+oo
I'(s) = / ts e tdt
0
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et la fonction ¢ par
+o0 1

C(s) = "
n=1 n
1. Rappeler dans quel espace est définie la fonction (.
2. Montrer que pour o = R(s) > 1, ona
+

C(s)D(s/2)m%/% = oow(t)ts/%ldt
0

On pourra effectuer le changement de variable ¢ = mn?z.

3. Montrer que
+oo

+oo
/2 qt = / =572 4 ys/2=1) (1) dt
ARG oot + 1271 ()

4. En déduire que la fonction ¢ de Riemann se prolonge sur C\{1} en une fonction holomorphe. Que dire de
1?

5. On pose la fonction &(s) = 7*/2T'(s/2)((s). Montrer que £(s) = £(1 — s).

6. Démontrer (a I’aide des exercices 4 et 5 ) ’équation fonctionnelle, pour C\{0; 1}

¢(s) = 275 Lsin (%‘9) T(1 - s)¢(1—s)

En déduire la valeur de ¢(—2k) pour k > 0 et {(—1).
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