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Chapitre 1

Fonctions holomorphes, Fonctions analytiques

1.1 Généralités sur les fonctions holomorphes, Conditions de Cauchy-
Riemann

Exercice 1 - Opérations sur les fonctions holomorphes
En utilisant la définition par C-différentiabilité :

1. Démontrer que la somme ou le produit de deux fonctions holomorphes f, g : U → C, définies sur un ouvert
U de C, sont encore holomorphes. Déterminer leur dérivée complexe.

2. Même question pour la fonction (1/f) : z ∈ U → (1/f(z)) ∈ C∗, en supposant que la fonction holomorphe
f : U → C∗ ne s’annule pas.

3. Même question pour f ◦ g, en supposant cette fois que g est holomorphe de V (un ouvert) dans U .

Exercice 2
On munit R2 de sa structure euclidienne canonique.

1. Montrer que l’application f : z ∈ C → (1 + i)z ∈ C est une similitude directe. Déterminer le rapport de
cette similitude, et l’angle de la rotation sous-jacente.

2. Déterminer la différentielle au point z0 = 1 de l’application f : R2 ∼ C → R2 ∼ C définie par f(z) =
z + z̄2. L’application f est-elle holomorphe?

3. Montrer que la composition de deux similitudes directes est une similitude directe. En déduire que si f :
V → C et g : U → V sont deux fonctions holomorphes, définies sur les ouverts U, V ⊂ C, alors f ◦ g :
U → C est holomorphe.

Exercice 3
Soit U un domaine de C, c’est à dire un ouvert connexe non-vide.

1. Montrer qu’une fonction continue de U dans C localement constante est constante.
2. Soit f de U dans C, et C1 vue comme fonction définie sur une partie de R2. Montrer que si ∂f

∂x et ∂f
∂y sont

nulles sur U , alors f est constante sur U .

Exercice 4
Soit U un domaine de C et f une fonction holomorphe sur U . Montrer que les assertions suivantes sont équiva-
lentes.

1. f est constante.
2. <(f) = Re(f) est constante.
3. =(f) = Im(f) est constante.
4. |f | est constant.
5. f̄ est holomorphe (on dit que f est anti-holomorphe).

Exercice 5
Soit U un domaine et f, g deux fonctions holomorphes sur U .

1. On suppose que pour tout z ∈ U , il existe cz ∈ R tel que f(z) = g(z) + cz . Montrer qu’il existe c ∈ R tel
que pour tout z ∈ U on a f(z) = g(z) + c.

2. On suppose que pour tout z ∈ U , il existe cz ∈ R tel que f(z) = cz · g(z). En admettant que si g n’est pas
identiquement nulle, on a U\Z(g) connexe en notant Z(g) les zéros de g, montrer qu’il existe c ∈ R tel que
pour tout z ∈ U on a f(z) = c · g(z).

3. On note respectivement P = Re f et Q = Im f la partie réelle et la partie imaginaire de f . Déterminer
toutes les fonctions Q1 : U → R pour lesquelles f1 = P + iQ1 : U → C est holomorphe.
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4 Chapitre 1. Fonctions holomorphes, Fonctions analytiques

4. On suppose qu’il existe F ∈ C1(R,R) telle que <(f) = F (=(f)). Que peut-on dire de f ?

Exercice 6
Ecrire les conditions de Cauchy Riemann en polaire. Précisément, en considérant une fonction holomorphe f sur
un ouvert U et ρ : (r, θ) 7→ (r cos θ, r sin θ), calculer :

∂(f ◦ ρ)
∂r

;
∂(f ◦ ρ)
∂θ

.

Exercice 7
On prend les notations : z = x+ iy, x = <(z), y = =(z).

1. Soit R la fonction polynomiale définie par R(z) = x+ 2ixy. En quels points z0 = x0 + iy0 admet-elle une
dérivée complexe?

2. La fonction polynomiale P (z) = x+ iy2 est elle holomorphe? Et Q(z) = x2 + y2 + ixy ?
3. Soit P ∈ C[X,Y ]. Montrer qu’il existe un polynôme Q ∈ C[X,Y ] tel que pour tout z ∈ C, on a P (x, y) =
Q(z, z̄).

4. Montrer qu’une fonction polynomiale f en x et y est holomorphe si et seulement s’il existe un polynôme
complexe tel que f(x, y) = P (z) pour tout z.

Exercice 8
On note ∂

∂z = 1
2

(
∂
∂x − i ∂

∂y

)
et ∂

∂z̄ = 1
2

(
∂
∂x + i ∂

∂y

)
.

1. (a) Calculer ∂f
∂z et ∂f

∂z̄ pour les fonctions f : R2 ∼ C → R2 ∼ C suivantes : f : (x, y) → x, f : (x, y) →
ex+y + 2i, f : z → z, f : z → z̄, f : z → zn(n ∈ Z).

(b) Soit f : z → P (z) avec P ∈ C[X], montrer que :

∂P (z)

∂z
= P ′(z),

∂P (z̄)

∂z̄
= P ′(z̄),

∂P (z)

∂z̄
=
∂P (z̄)

∂z
= 0.

Généraliser à f développable en série entière.
2. (a) Montrer qu’une fonction f : U ⊂ R2 ∼ C → R2 ∼ C, différentiable sur un ouvert U du plan, est

holomorphe si et seulement si ∂f
∂z̄ est identiquement nulle.

(b) Montrer que, si la fonction f : U → C est holomorphe, on a l’égalité ∂f
∂z = f ′(z).

3. On dit que f est antiholomorphe quand ∂f
∂z = 0.

(a) Donner des exemples de fonctions antiholomorphes.
(b) Montrer qu’une fonction f : U → C est antiholomorphe si et seulement si la fonction h : z ∈

U → f(z̄) ∈ C est holomorphe.

Exercice 9 - Fonction harmoniques sur un domaine
On définit le laplacien d’une fonction C2 sur un domaine U en posant :

∆f =
∂2f

∂x2
+
∂2f

∂y2
.

On dit que f est harmonique lorsque ∆f = 0 sur U .

1. On admet ici qu’une fonction holomorphe est C2. Montrer qu’une fonction holomorphe est harmonique ;
idem pour sa partie réelle et imaginaire.

2. Montrer que sur les fonctions C2,∆ = 4 ∂2

∂z∂z̄ = 4 ∂2

∂z̄∂z . Retrouver la question précédente.
3. Donner une condition nécessaire et suffisante sur les paramètres réels a, b, c pour que la fonction P : R2 → R

définie par P (x, y) = ax2 + 2bxy + cy2 soit la partie réelle d’une fonction holomorphe f : C → C.
4. Montrer qu’une fonction harmonique réelle est localement la partie réelle d’une fonction holomorphe. Indi-

cation : on pourra montrer qu’une fonction holomorphe sur un disque admet une primitive holomorphe.

Pour les curieux, ce dernier résultat n’a pas de version globale, on peut le voir avec u(x + iy) = 1
2 log

(
x2 + y2

)
qui donnerait une détermination du log sur C∗, ce qui n’est pas possible (ce sera montré dans les cours suivants).
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1.2 Séries entières

Exercice 10
Pour une suite (an)n∈N de nombres complexes, le rayon de convergence de la série entière

∑
anz

n associée est
défini par l’expression

R = sup {r ≥ 0; |anrn| est borné } ∈ [0,+∞]

1. (a) Montrer, avec la convention 1/0 = ∞, l’égalité 1/R = lim sup
(
|an|1/n

)
.

(b) Si tous les (an) sont non nuls à partir d’un certain rang, montrer qu’on a l’inégalité 1/R ≤ lim sup
∣∣∣an+1

an

∣∣∣.
Donner un exemple où l’inégalité est stricte.

2. Peut-on avoir R = 0?
3. Rappeler les démonstrations des propriétés fondamentales suivantes :

(a) Pour 0 ≤ r < R, la série entière converge normalement sur le disque fermé D(0, r).
(b) Si|z| > R, la série

∑
anz

n diverge grossièrement (terme général non borné).

4. Montrer que les séries entières
∑
anz

n et
∑
nanz

n ont même rayon de convergence.
5. (a) Déterminer le rayon de convergence des séries entières

∑
zn,
∑
n−2zn et

∑
n−1zn.

(b) Etudier la convergence des deux permières séries sur le cercle de convergence.
(c) Etudier la convergence de la troisième série aux deux points ±1.
(d) Bonus. Etudier la convergence de la troisième série sur le cercle de convergence (cette question néces-

site de connaître la transformation d’Abel).

Exercice 11 1. Soient
∑
anz

n et
∑
bnz

n deux séries entières de rayons de convergence R1 et R2.
Montrer que, lorsque |z| < min (R1, R2), le produit (

∑
anz

n) (
∑
bnz

n) s’écrit comme somme d’une série
entière

∑
cnz

n, de rayon de de convergence R ≥ min (R1, R2).
Déterminer les coefficients (cn) en fonction des (an) et des (bn).

2. Soit la série entière
∑+∞

n=0
zn

n! . Montrer que son rayon de convergence est infini. On note exp : z ∈ C →
ez ∈ C sa somme. Montrer l’égalité ez+w = ezew pour tous z, w ∈ C.

Exercice 12
Pour z ∈ C, on pose cos(z) = eiz+e−iz

2 et sin(z) = eiz−e−iz

2i .

1. Lemme : Soient f et g deux fonctions entières égales sur R. Montrer qu’elles sont égales sur C.
2. Montrer que cos et sin sont des fonctions entières 2π-périodiques.
3. Pour a, b ∈ C, exprimer cos(a+ b) et sin(a+ b) en termes des cos et sin de a et de b.
4. Montrer l’égalité cos2 z + sin2 z = 1 pour tout z ∈ C. Les fonctions cos et sin sont-elles bornées sur C?

Exercice 13
On définit, quand c’est possible, la fonction sinus par sin(z) =

∑
p∈N

(−1)p

(2p+1)!z
2p+1.

1. Les propositions suivantes sont elles vraies ?

(a) La fonction sinus est bien définie sur C.
(b) ∀z ∈ C, sin(z) = eiz−e−iz

2i .
(c) ∀z ∈ C, sin(z) = =

(
eiz
)
.

(d) La fonction sinus est bornée sur C.
(e) Si z ∈ R alors la fonction sinus est la fonction habituelle sur R.
(f) Il existe une fonction f holomorphe différente du sinus complexe, mais qui coïncide avec le sinus réel

quand z ∈ R.

2. Pour quelles valeurs de z ∈ C a t-on sin(z) = 0?

3. Montrer que la fonction f définie par f(z) = sin
(

π
1−z

)
est holomorphe sur le disque ouvert D(0, 1). Quels

sont les zéros de f sur ce disque? Est-ce en contradiction avec le principe de zéros isolés?

Exercice 14
Soient P,Q ∈ C[X], avec Q(0) 6= 0, et la fraction rationnelle f = P/Q. Soit l’ensemble des zéros Z = {z ∈ C |
Q(z) = 0} de Q, que l’on suppose non vide, et α = inf{|z|, z ∈ Z}.
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1. Montrer que f est holomorphe sur U = C\Z.
2. Montrer que f est développable en série entière en 0 sur le disque D(0, α).

Exercice 15
Soient

∑
anz

n une série entière de rayon de convergence égal à 1, et f : D(0, 1) → C sa somme. On dit qu’un
point u sur le cercle de convergence S1 = {|u| = 1} est un point régulier si il existe une fonction holomorphe
gu : Vu = D(0, 1)∪D (u, ru) → C telle que gu = f sur D(0, 1). Sinon, on dit que u est un point singulier. (Faire
un dessin !)

1. On considère ici l’exemple de la série entière
∑
zn. Exprimer sa somme f sous forme d’une fraction ration-

nelle, puis déterminer les points singuliers du cercle de convergence.
2. On veut montrer qu’il existe toujours des points singuliers sur le cercle de convergence. On procède par

l’absurde, et on suppose que tout point u ∈ S1 est un point régulier.

(a) Soient u, v ∈ S1 et ru, rv > 0 tels queD (u, ru)∩D (v, rv) 6= ∅. On veut montrer queD∩D (u, ru)∩
D (v, rv) 6= ∅ (faire un dessin).
On pose t = rv

ru+rv
. Montrer que le point w = tu+(1− t)v appartient à l’intersection D∩D (u, ru)∩

D (v, rv). On commencera par remarquer que |u− v| < ru + rv .
(b) En déduire que f se prolonge en une fonction holomorphe définie sur un ouvert V contenant le disque

unité fermé D(0, 1).
(c) Montrer que V contient un disque D(0, R) avec R > 1.
(d) Montrer enfin que l’ensemble des points singuliers est un fermé non vide du cercle de convergence.

3. Bonus. Soit la série entière
∑

n∈N z
(2n), de rayon de convergence R et de somme f .

(a) Montrer que R = 1 puis que, pour tout entier n ≥ 1, et tout z ∈ D(0, 1), on a f
(
z(2

k)
)
= f(z) −(

z + z2 + · · ·+ z2
(k−1)

)
.

(b) Montrer que le point z0 = 1 est un point sigulier, puis que toute racine 2k-ième de l’unité est un point
singulier. En déduire que tout point du cercle de convergence est un point singulier.

1.3 Principe des zéros isolés

Exercice 16
Décrire les fonctions analytiques dans le disqueD1(1) := {z ∈ C||z−1 |< 1} satisfaisant pour tout entier n ⩾ 2 :

1. f
(
1 + 1

n

)
= 1 + 1

n

2. f
(
1 + 1

n

)
= 1

n2

3. f
(
1 + 1

2n

)
= f

(
1 + 1

2n+1

)
= 1

n

4. f
(
1 + 1

n

)
= e−n.

Exercice 17 1. Discuter l’existence et l’unicité d’une fonction holomorphe f : D(0, 1) → C vérifiant, pour
tout n ≥ 2, les égalités :
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(a) f
(
1
n

)
= 1− 1

n ,
(b) f

(
1
n

)
= f

(
− 1

n

)
= 1

n

(c) f
(
1
n

)
= n2

1+n2 ,

(d) f
(
1
n

)
= 1√

n
.

2. Même question pour une fonction holomorphe h : D(1, 1) → C, avec les égalités :

(a) h
(
1
n

)
= 0,

(b) h
(
1
n

)
= 1√

n
.

Exercice 18
Soit f une fonction analytique non identiquement nulle sur U ouvert connexe de C et soitK un compact de C inclu
dans U . On note K0 = {x ∈ K/f(x) = 0} les points d’annulation de f sur K. Montrer que K0 est fini.

Exercice 19
Soit Ω un ouvert connexe non vide de C. On suppose que f, g sont analytiques sur Ω telles que f(z)g(z) = 0, pour
tout z ∈ Ω. Montrer que soit f ≡ 0 soit g ≡ 0 sur Ω. Trouver deux fonctions lisses f, g : R → R telles que fg ≡ 0
mais ni f , ni g est identiquement 0.

Exercice 20
Soit f : C → C une fonction analytique ayant la propriété qu’en tout point z0 ∈ C, son développement en série
entière

f(z) =

∞∑
n=0

f (n) (z0)

n!
(z − z0)

n

possède au moins un coefficient nul fnz0 (z0) = 0. Montrer que f est un polynôme.
Indication : Employer un argument de dénombrabilité.

1.4 Logarithmes complexes

Exercice 21 - Logarithme(s) complexe
Soit Ω inclus dans C∗. On appelle logarithme sur Ω une fonction continue sur Ω vérifiant exp(f(z)) = idΩ.

1. On appelle C− l’ensemble des nombres complexes privé de la droite des réels négatifs ou nuls. On définit la
fonction log sur C− par

log(z) = ln(|z|) + i arg(z)

où arg(z) est l’argument de z compris entre ] − π, π[. Montrer que log(z) est un logarithme. On l’appelle
détermination principale du logarithme.

2. Montrer qu’il n’existe pas de logarithme sur le cercle unité.
3. Montrer que la différence entre deux logartihmes est égale à 2kiπ, avec k ∈ Z.
4. Montrer qu’un logarithme sur Ω est holomorphe et de dérivée 1

z .

Dans de nombreux cas, on utilisera la détermination principale du logarithme, mais il est parfois plus pratique
(voir les TDs suivants) de travailler avec une autre détermination : il est important de donner la détermination que
vous utilisez quand vous manipulez un logarithme.
Il est également nécessaire de donner une détermination du logarithme quand on traite de puissance de nombre
complexe. Par exemple, si λ ∈ C et log est la détermination principale, on a

zλ = exp(λ log(z))

Exercice 22
1. Rappeler la définition de la détermination principale du logarithme complexe, que l’on notera désormais log,

son domaine de définition U et son ensemble image.
2. Déterminer log(1 + i), log

(
e3iπ/4

)
et log

(
e4iπ/3

)
.

3. Soient z1, z2 ∈ U tels que z1z2 ∈ U . Comparer log (z1z2) et log (z1) + log (z2).
4. Soit α ∈ C. Proposer une définition de zα pour z ∈ U . Comparer alors z2i,

(
z2
)i

et
(
zi
)2

pour z = e3iπ/4.
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Exercice 23
1. Rappeler le développement en série entière de la détermination principale du logarithme au voisinage de
z0 = 1, et son rayon de convergence.

2. Quel est le domaine de définition U de la fonction holomorphe h : z → log 1+z
1−z ? Le dessiner.

3. Soit h(z) =
∑∞

n=0 anz
n le développement en série entière de h à l’origine.

(a) Déterminer a priori son rayon de convergence.
(b) Déterminer les (an).

1.5 Intégrales curvilignes

Exercice 24 - Longueur d’un chemin
Dans Rn euclidien (et donc dans C ' R2 ), on sait naturellement définir la longueur d’un segment, et donc
d’une ligne polygonale. Soit γ : [0, 1] → Rn une courbe (application) continue. Pour une subdivision σ =

(0 ≤ t0 < · · · < tn ≤ 1) de [0, 1], on introduit la longueur Vσ(γ) =
∑n−1

i=0 ‖γ (ti+1)− γ (ti)‖ de la ligne polygo-
nale inscrite dans γ correspondant à cette subdivision. La longueur de γ est alors définie par L(γ) = supσ Vσ(γ) ∈
[0,∞], le sup étant pris sur toutes les subdivisions de [0, 1] (faire un dessin).

On suppose que γ est de classe C1 et on veut montrer l’égalité L(γ) =
´ 1
0
‖γ′(t)‖ dt.

1. Montrer l’égalité L(γ) ≤
´ 1
0
‖γ′(t)‖ dt.

2. Montrer l’inégalité inverse L(γ) ≥
´ 1
0
‖γ′(t)‖ dt.

Utiliser l’uniforme continuité de la dérivée γ′ sur [0, 1], et la convergence des sommes de Riemann
∑n−1

i=0 ‖γ′ (ti)‖
vers
´ 1
0
‖γ′(t)‖ dt, lorsque le pas de la subdivision tend vers 0.

Exercice 25
Soit γ une courbe lisse dans C paramétrée par z(t) : [a, b] → C. Soit γ− la courbe orientée dans le sens inverse.
Montrer que pour toute fonction continue f sur γ, on a :

ˆ
γ

f(z)dz = −
ˆ
γ−
f(z)dz

Exercice 26 1. Intégrer la fonction z → z̄ − 1 sur le bord orienté du triangle T de sommets (0, 2, 2i).
2. Soient z0 = −i, z1 = 2 + i et γ le segment de droite reliant z0 à z1. Calculer

´
γ
z2dz.

Exercice 27
Soit k ∈ Z. Intégrer la fonction fk : z 7→ zk sur le cercle unité, parcouru dans le sens trigonométrique. Pour
quelles valeurs de k la fonction fk a-t-elle une primitive sur C∗ ?



Chapitre 2

Théorèmes de Cauchy et applications

2.1 Lemme de Goursat

Exercice 1 - Lemme de Goursat
Soit f une fonction à valeurs complexes, définie sur un ouvert Ω de C. Si f est dérivable au sens complexe en tout
point de Ω, et si ∆ ⊂ Ω est un triangle (fermé), alors

ˆ
∂∆

f(z)dz = 0

1. On suppose que f est dérivable au sens complexe en z0 ∈ Ω, et on pose

f(z) = f (z0) + (z − z0) f
′ (z0) + |z − z0| ε(z).

Montrer que pour tout triangle ∆ ⊂ Ω contenant z0,∣∣∣∣ˆ
∂∆

f(z)dz

∣∣∣∣ ≤ 3diam(∆)2 max
z∈∆

|ε(z)|

2. Soit ∆ ⊂ Ω un triangle. Montrer qu’il existe un triangle ∆′ ⊂ ∆ tel que diam (∆′) ≤ diam(∆)/2, et∣∣∣∣ˆ
∂∆′

f(z)dz

∣∣∣∣ ≥ 1

4

∣∣∣∣ˆ
∂∆

f(z)dz

∣∣∣∣
3. En utilisant les deux questions précédentes, démontrer le Lemme de Goursat.
4. Montrer que le résultat reste vrai si l’on suppose seulement que f est localement bornée sur Ω et holomorphe

sur Ω\{w} pour un certain point w ∈ Ω.

Exercice 2 - Cas particulier du théorème de Goursat
Dans un ouvert Ω ⊂ C, soit une fonction holomorphe f qui est continûment différentiable, i.e. (x, y) 7−→ ∂f

∂x (x, y)

et (x, y) 7−→ ∂f
∂y (x, y) sont continues (ce qui n’est pas demandé dans la définition de l’holomorphie). Soit aussi

T = T̄ ⊂ Ω un triangle fermé non aplati. Dans cet exercice nous donnerons une autre preuve du théorème de
Goursat

0 =

ˆ
∂T

f(z)dz

avec cette hypothèse supplémentaire. Procéder comme suit :

1. Étudier d’abord ce cas spécial du théorème général de Riemann-Green : Pour une fonction réelle P ∈
C 1(Ω,R), ˆ

∂G

(Pdx) =

ˆ
G

(
−∂P
∂y

)
dxdy

en supposant le domaine G où l’on intègre de la forme "sandwich entre deux graphes" :

G :=
{
(x, y) ∈ R2 : a ≤ x ≤ b, f−(x) < y < f+(x)

}
avec −∞ < a < b < +∞, avec deux fonctions f−, f+continues C 1

pm définies sur [a, b] satisfaisant f− <
f+sur ]a, b[.

9
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2. Déduire que pour deux fonctions réelles P,Q ∈ C 1(Ω,R) l’intégrale suivante sur le bord du triangle est
égale à une intégrale dans l’intérieur :

ˆ
∂T

(Pdx+Qdy) =

ˆ
T

(
−∂P
∂y

+
∂Q

∂x

)
dxdy.

Indication : Commencer avec le cas Q = 0 et utiliser le résultat de (1). Ensuite, traiter le cas P = 0 à l’aide
d’un changement de variable.

3. Compléter la preuve du théorème de Goursat avec cette hypothèse supplémentaire que f ∈ C 1(Ω,C).

2.2 Calculs d’intégrales

Exercice 3
Soit a > 0. Pour R > 0, soit γR le rectangle orienté de sommets −R,R,R + ia,−R+ ia.

1. Déterminer l’intégrale
´
γR
e−z2

dz.

2. Montrer que la fonction x ∈ R → cos(ax)e−x2 ∈ R est intégrable, et calculer son intégrale.

Exercice 4
Un théorème de Weierstrass énonce qu’une fonction continue sur [0, 1] peut être uniformément approximée à
volonté par des polynômes réels. Montrer que les fonctions continues sur le disque unité D ne sont pas toutes
uniformément approximables par des polynômes holomorphes P (z) ∈ C[z].
Indication : Essayer d’approximer f(z) = z̄ et calculer

´
∂D z̄dz.

Exercice 5
Soit γ : I = [a, b] → C un chemin dans C∗ donné par γ(t) = ρ(t)eiθ(t), avec ρ et θ deux fonctions C1 sur I, ρ ne
s’annulant pas.

1. Montrer que
1

2iπ

ˆ
γ

dz

z
=

1

2iπ
log
(
ρ(b)

ρ(a)

)
+
θ(b)− θ(a)

2π

2. Montrer que si γ est un lacet (γ(a) = γ(b)), alors 1
2iπ

´
γ

dz
z est un entier. A quoi correspond t-il ?

Exercice 6 - Le Lemme de Jordan
Soit ε > 0. Soit f : U → C une fonction continue définie sur

U = {z ∈ C, Im z > 0 et |z| > ε.}

1. Pour R > ε, on introduit le chemin γR : t ∈ [0, π] → Reit ∈ C. Dessiner U et γR.
2. On suppose que limz∈U,|z|→∞ |f(z)| = 0. Montrer alors que, pour tout réel a > 0, on a

lim
R→∞

ˆ
γR

eiazf(z)dz = 0

On rappelle l’inégalité sin θ ≥ 2θ/π, que l’on redémontrera, valable pour θ entre 0 et π/2.

Exercice 7 - Intégrale de Fresnel - V1
Le but de l’exercice est de déterminer la valeur de

´ +∞
0

cos
(
t2
)
dt et de

´ +∞
0

sin
(
t2
)
dt (sous réserve d’exis-

tence).

1. Monter qu’il suffit de connaitre la valeur de
´ +∞
0

e−it2dt (sous réserve d’existence).

On définit A = 0, B = R et C = R(1 + i) trois points dans le plan complexe, on note T le triangle orienté
(ABC) et ∂T son bord. Soit f(z) = exp

(
−z2

)
2. On admet ici que f admet une primitve holomorphe sur C. En déduire la valeur de IR =

´
∂T
f(z)dz
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3. En considérant des courbes C1 entre A et B,B et C,C et A, montrer que

IR = AR +BR + CR

où AR, BR, et CR sont 3 intégrales complexes.
4. Montrer que

lim
R→+∞

ˆ R

0

e−R2+t2dt = 0

5. En déduire, en passant à la limite R→ +∞, que
´ +∞
0

e−it2dt existe et sa valeur.
6. Conclure.

Exercice 8 - Intégrales de Fresnel - V2
1. Esquisser le graphe de la fonction x ∈

[
0,∞

[
→ sin

(
x2
)
∈ R . Est-elle intégrable? On pourra effectuer le

changement de variables u = x2.

On va cependant montrer que l’intégrale
´∞
0

sin
(
x2
)
dx est semi-convergente, c’est-à-dire que la limite

Is = limR→∞
´ R
0

sin
(
x2
)
dx existe. Pour chaque R > 0, on considère un lacet γR d’image le bord orienté

du secteur du disque D(0, R), de sommets
(
0, R,Reiπ/4

)
.

2. Dessiner γR et déterminer la valeur de l’intégrale
´
γR
e−z2

dz.
3. En déduire que Is est bien définie, et la calculer. (On obtient également la valeur de l’intégrale semiconver-

gente Ic =
´∞
0

cos
(
x2
)
dx
)
.

Exercice 9 - Noyau de Poisson
1. Soit ζ ∈ C tel que 0 < |ζ| < 1. Montrer les identités

Re
(
1 + ζ

1− ζ

)
=

1− |ζ|2

1− 2Re ζ + |ζ|2
=

1

1− ζ
− 1

1− 1/ζ̄

2. En déduire, pour |w| = 1 et 0 < |z| < 1, l’identité 1
w−z = 1

w Re
(

w+z
w−z

)
+ 1

w−1/z̄ .

3. Soit f : U → C, holomorphe sur un ouvert U contenant le disque unité fermé {|z| ≤ 1}. Soit c1 = {|z| = 1}
parcouru dans le sens trigonométrique. Montrer que, pour |z| < 1 :

f(z) =
1

2iπ

ˆ
c1

f(w)Re
(
w + z

w − z

)
dw

w

4. En déduire la formule de représentation u(reit) =
´ 2π
0

u(eiθ) 1−r2

1−2r cos(θ−t)+r2 dθ pour la fonction harmo-
nique u = Re f sur le disque unité ouvert.

2.3 Inégalités de Cauchy

Exercice 10
Soit f : U → C une fonction holomorphe définie sur un ouvert U contenant le disque fermé {|z| ≤ 1}. Soit
M = sup|z|=1 |f(z)|.

1. Soient 0 < r < 1 et |z| ≤ r. Montrer que |f(z)− f(0)| ≤M r
1−r .

2. On suppose que a = |f(0)| 6= 0. Montrer que f(z) 6= 0 si |z| < a
M+a .

Exercice 11 - Théorème de Liouville
Soit f une fonction entière.

1. Soient a 6= b deux complexes, et R > sup(|a|, |b|). Evaluer l’intégrale

I(R) =

ˆ
CR

f(z)

(z − a)(z − b)
dz

où CR désigne le cercle de centre 0 et de rayon R parcouru dans le sens trigonométrique. On utilisera la
décomposition en éléments simples de la fraction rationnelle z → 1

(z−a)(z−b) .
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2. On suppose maintenant que f est bornée. Montrer alors que f est constante.

On verra en cours une autre démonstration, également basée sur la formule de Cauchy.

Exercice 12 - Théorème de d’Alembert-Gauss - V1
Soit P (z) = zn + an−1z

n−1 + · · ·+ a1z+ a0 un polynôme unitaire de degré n ≥ 1 à coefficients complexes. On
veut montrer que P admet au moins un zéro sur C.

1. Montrer qu’il existe R > 0 tel que |P (z)| ≥ |z|n/2 pour tout complexe z tel que |z| ≥ R.
2. On suppose, par l’absurde, que P ne s’annule pas et on introduit la fonction entière f = 1/P . Déduire de la

formule de Cauchy que f(0) = 0, puis conclure.

Exercice 13 - Formule de Cauchy sur les dérivées
Soient f : U → C avec U un ouvert convexe, et γ un lacet tracé dans U .

1. Rappeler l’énoncé de la formule de Cauchy pour f .
2. En déduire la formule de Cauchy pour ses dérivées, en utilisant le théorème de dérivation sous l’intégrale.

Une autre preuve sera donnée en cours.

Exercice 14 - Fonctions à croissance polynomiale
Soit f : C → C une fonction entière. On suppose qu’il existe un entier m ∈ N et une constante c > 0 telle que
|f(z)| ≤ c|z|m pour tout z ∈ C tel que |z| ≥ 1. Montrer alors que f est une fonction polynomiale de degré au plus
m.

2.4 Principes du maximum

Exercice 15 - Principe du maximum
Soit f une fonction holomorphe d’un ouvert Ω et soit a ∈ Ω et r ∈ R∗

+ tels que le disque fermé D̄(a, r) soit inclus
dans Ω.

1. Montrer que

f
(
a+ reiθ

)
=

+∞∑
0

1

n!
f (n)(a)rneinθ

puis que
1

2π

ˆ 2π

0

∣∣f (a+ reiθ
)∣∣2 dθ = +∞∑

0

∣∣∣∣ 1n!f (n)(a)
∣∣∣∣2 r2n

2. En déduire le principe du maximum (ou plutôt, l’une des nombreuses versions de ce principe) : Soit Ω un
domaine et f une fonction holomorphe sur Ω. Si |f | admet un maximum local, alors f est constante sur Ω.

3. Retrouver le théorème de D’Alembert Gauss à l’aide du principe du maximum.

Exercice 16
Soient f, g et h des fonctions holomorphes sur un ouvert connexe U contenant le disque unité fermé.

1. On suppose que f et g ne s’annulent pas, et que |f | = |g| sur le cercle unité. Montrer qu’il existe un complexe
λ ∈ C de module 1 tel que f = λg.

2. Le résultat ci-dessus persiste-t-il si f et g peuvent s’annuler ?
3. On suppose que h : U → C holomorphe ne prend que des valeurs réelles sur le cercle unité. Montrer que h

est constante.
On pourra introduire la fonction f = eih.

Exercice 17
Soient f1, f2 . . . ..fm et g m+1 fonctions holomorphes dans un domaine U de C, avec g non identiquement nulle.
On supose que |g| =

∑m
j=1 |fj | dans U .

1. Montrer qu’il existe des fonctions u1, u2 . . . um holomorphes dans U telles que fj = ujg et
∑m

j=1 |uj | = 1

2. Soit α ∈ U . Exhiber des nombres complexes εj de module 1 tels que 1 =
∑m

j=1 εjuj(α). En déduire que
1 =

∑m
j=1 εjuj dans U
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3. Soit w1, w2 . . . .wm des nombres complexes tels que 1 =
∑m

j=1 |wj | =
∑m

j=1 wj . Montrer que si w1 6= 0
alors wj = λjw1 avec λj ≥ 0.

4. En déduire que les fonctions uj sont constantes dans U . En déduire une relation entre g et f .

Exercice 18 - Lemme de Schwarz
On noteD le disque de centre 0 de rayon 1 . Soit f une fonction holomorphe surD vérifiant f(0) = 0 et |f(z)| < 1
pour z ∈ D.

1. Montrer que |f(z)| ≤ |z| pour |z| ∈ D (on pourra considérer la fonction g(z) = f(z)/z).
2. Montrer que |f ′(0)| ≤ 1.
3. Montrer que si |f ′(0)| = 1 ou s’il existe z ∈ D non nul tel que |f(z)| = |z| alors il existe λ ∈ C vérifiant

|λ| = 1 et f(z) = λz pour z ∈ D.

Exercice 19
Soient U ⊂ C un ouvert connexe, f : U → C holomorphe et z0 ∈ U . Montrer que, si Re f ou bien Im f admet
un maximum ou un minimum local en z0, alors la fonction f est constante. On pourra déduire ces résultats du
principe du maximum, ou bien du théorème de l’application ouverte.

Exercice 20 - Théorème des trois droites de Hadamard
Soit h ∈ C0(B) ∩ O(B) une fonction continue sur la bande fermée B, et holomorphe sur la bande ouverte B =
{z ∈ C, 0 < Re z < 1}. On suppose que h est bornée sur B. Soient M0,M1 > 0 tels que |h(z)| ≤ M0 lorsque
Re z = 0 et |h(z)| ≤M1 lorsque Re z = 1.

On veut montrer qu’on a, pour tout t ∈ [0, 1], la majoration |h(z)| ≤M1−t
0 M t

1 lorsque Re z = t.
Soit ε > 0. On introduit la fonction définie pour z ∈ B parhε(z) =Mz−1

0 M−z
1 eεz(z−1)h(z).

1. Vérifier que l’expression définissant hε a bien un sens.
2. Montrer que |hε(z)| ≤ 1 lorsque z ∈ B et | Im z| est grand.
3. En déduire que |hε| ≤ 1 pour tout z ∈ B.
4. Conclure.

Exercice 21
Soit f une fonction holomorphe sur D(0, 1). On appelle diamètre de f la quantité

d = sup
w,z∈D(0,1)

|f(z)− f(w)|

éventuellement infinie.
1. Démontrer que 2f ′(0) = 1

2iπ

´
C(0,r)

f(w)−f(−w)
w2 dw, pour r ∈ (0, 1).

2. En déduire que 2 |f ′(0)| ≤ d.

2.5 Convergence uniforme d’une suite de fonctions holomorphes

Exercice 22
Soient U un ouvert connexe de C et f une fonction holomorphe sur U telle que la suite fn = f (n) converge
uniformément sur tout compact de U . Que peut-on dire de la limite g de la suite (fn)n ?

Exercice 23
Soit fn : U → C une suite de fonctions holomorphes. Soit D̄(a, r) ⊂ U un disque fermé inclus dans U .

1. On suppose que chaque fn s’annule au point a(n ∈ N). Montrer que les fonctions définies pour z ∈ U\{a}
par gn(z) =

fn(z)
z−a se prolongent en des fonctions holomorphes gn : U → C.

2. On suppose maintenant de plus que la suite (fn) converge uniformément vers 0 sur U .
(a) Montrer alors que la suite (gn) converge uniformément vers 0 sur U .
(b) Montrer que la suite (g′n) converge uniformément sur D̄(a, r), et déterminer sa limite.

Exercice 24
Soit Ω un ouvert connexe de C et soit (fn) une suite de fonctions holomorphes dans Ω qui convergent uniformément
sur tous les compacts de Ω vers f (f est donc holomorphe). On suppose que les (fn) ne s’annulent pas sur Ω et on
veut prouver que f ne s’annule pas ou f est identiquement nulle. On suppose f non identiquement nulle et on fixe
a ∈ Ω.
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1. Justifier l’existence d’un réel r > 0 tel que D̄(a, r) ⊂ Ω et f ne s’annule pas sur le bord du disque D(a, r).
2. Justifier l’existence de ε > 0 tel que, pour tout z ∈ ∂D(a, r), |f(z)| ≥ ε.
3. Justifier l’existence de N ∈ N tel que, pour tout n ≥ N et tout z ∈ ∂D(a, r), |fn(z)| ≥ ε/2.
4. En déduire que |fn(a)| ≥ ε/2 puis conclure.

Exercice 25 - Théorème de Montel version faible
Soient U un ouvert de C et (fn) une suite de fonctions holomorphes qui convergent simplement sur U vers f . On
suppose que (fn) est uniformément bornée (ie il existe C telle que ∀z ∈ U, ∀n ≥ 0, |fn(z)| ≤ C).

1. On fixe K un compact de U et z0 ∈ K, r > 0 tel que D (z0, r) ⊂ U . Montrer qu’il existe une constante
M > 0 telle que, pour tout z ∈ D (z0, r/2), on a

|fn(z)− fm(z)| ≤M

ˆ
C(z0,r)

|fn(w)− fm(w)| dw

2. En déduire que, pour tout ε > 0, il existe p = p (z0) tel que, pour tout n,m ≥ p (z0), on a

sup
z∈D(z0,r/2)

|fn(z)− fm(z)| ≤ ε

3. Conclure que (fn) converge uniformément vers f sur K.

Exercice 26
On considère le produit infini

f(z) :=

∞∏
n=0

(
1 + z2

n
)

1. Montrer que ce produit définit une fonction f holomorphe sur le disque unité D.
2. Montrer que ∀z ∈ D, f

(
z2
)
= f(z)/(1 + z).

3. En déduire que ∀z ∈ D, f(z) = 1/(1− z).



Chapitre 3

Homotopies, Séries de Laurent, Fonctions
méromorphes

3.1 Homotopie

Exercice 1 - Existence (ou non) de primitives
Soit f : z → 1/(z(z − 1)).

1. Déterminer la valeur des intégrales
´
γi
f(z)dz, où γ1 = c(2, 3) et γ2 = c(2, 3/2) sont les cercles de centre

2 et de rayons respectifs 3 et 3/2, parcourus dans le sens trigonométrique.
2. La fonction f admet-elle une primitive sur C\{0, 1}?
3. Soit U = C\[0, 1] le plan privé du segment [0, 1] ⊂ R.

(a) Soit γ un lacet tracé dans U . Montrer l’égalité ind (γ, 0) = ind(γ, 1). On pourra étudier l’application
t ∈ [0, 1] → ind(γ, t) ∈ Z.

(b) Montrer que la restriction f|U de f à cet ouvert y admet une primitive F : U → C.
(c) Expliciter une telle primitive F à l’aide de fonctions usuelles. On vérifiera que l’expression proposée

a bien un sens.

Exercice 2
On veut montrer qu’il n’existe pas de fonction entière f : C → C telle que f ◦ f = exp. On procède par l’absurde,
et on considère une telle fonction.

1. Montrer que C∗ ⊂ f(C), puis en déduire l’égalité f(C) = C∗.
2. Montrer que f possède un logarithme g : C → C.
3. Montrer qu’il existe une constante c ∈ C telle que (g ◦ f)(z) = z + c pour tout z ∈ C. On pourra utiliser la

relation fonctionnelle eg ◦ f = exp.
4. En déduire que f serait injective, puis conclure.

Exercice 3
Soit f : U → C une fonction holomorphe définie sur un ouvert connexe U . On suppose que U contient le disque
unité fermé, et que f ne s’annule pas.

1. Montrer qu’il existe deux points distincts z1 et z2 sur le cercle unité pour lesquels |f(0)| = |f (z1)| =
|f (z2)|.

2. Le résultat persiste-t-il si f peut s’annuler ?

Exercice 4
Soient f, g deux fonctions entières.

1. On suppose que, pour tout z ∈ C, on a l’inégalité stricte |f | < |g|. Que dire de f/g ?
2. On suppose f non constante. Montrer que l’image f(C) ⊂ C est dense. On procèdera par contradiction, en

supposant que le disque D(a, r) ne rencontre pas f(C).

Exercice 5 - Formule de Cauchy pour f de classe C1

L’objectif de cet exercice est de donner une autre preuve de la formule de Cauchy, pour une fonction holomorphe
dont on sait déjà que sa dérivée est continue.

Soient U ⊂ C un ouvert et f : U → C holomorphe. On suppose que f est de classe C1, c’est-à-dire que sa
dérivée f ′ : U → C est continue.

15



16 Chapitre 3. Homotopies, Séries de Laurent, Fonctions méromorphes

1. Soit Γ : (s, t) ∈ [0, 1] × [0, 1] → γs(t) ∈ U une application de classe C2. On suppose que, pour tout s,
le chemin γs : [0, 1] → U est un lacet i.e. que γs(0) = γs(1). Montrer que la fonction I : s ∈ [0, 1] →´
γs
f(z)dz est constante. On pourra chercher à dériver sous le signe somme.

2. Soit D (z0, r) ⊂ U un disque fermé. Déduire du (1) qu’on a pour tout z ∈ D (z0, r)

f(z) =
1

2iπ

ˆ
C(z0,r)

f(w)

w − z
dw

Utiliser (1) pour passer de l’intégrale sur le cercle C (z0, r) à une intégrale sur un cercle C(z, ε) avec ε > 0
petit.

Exercice 6
Soit f une fonction holomorphe de U dans U avec U domaine de C. On suppose que f vérifie f ◦ f = f . Montrer
que f est constante ou que f est l’application identité.

Exercice 7
1. On considère la fonction f(z) = exp

(
1

1−z

)
. Donner la nature de la singularité en 1 de la fonction. La fonc-

tion est-elle méromorphe sur C? Calculer le développement en série de Laurent de la fonction en puissance
de z − 1 dans C/{1} et vérifier la nature de la singularité en 1.

2. Donner le développement en série de Laurent en 0 de la fonction g(z) = exp
(
z + 1

z

)
.

Exercice 8
Soit f : U → C∗ une fonction holomorphe définie sur un ouvert connexe, et ne s’annulant pas.

1. Soit γ : [0, 1] → U un lacet. Montrer que

1

2iπ

ˆ
γ

f ′(z)

f(z)
dz ∈ Z

On pourra introduire la fonction λ : t ∈ [0, 1] → exp
(´

γ([0,t])
f ′(z)
f(z) dz

)
∈ C.

2. Montrer que f admet un logarithme g : U → C∗ holomorphe (i.e. f = exp ◦g) si et seulement si on a, pour
tout lacet tracé dans U , l’égalité ˆ

γ

f ′(z)

f(z)
dz = 0

3. Soit k ≥ 2. On suppose que f admet une racine k-ième holomorphe h : U → C∗. Montrer qu’on a alors
pour tout lacet tracé dans U :

1

2iπ

ˆ
γ

f ′(z)

f(z)
dz ∈ kZ

4. On suppose que f vérifie la condition précédente pour un entier k ≥ 2.

(a) On fixe ζ0 ∈ U . Soient ζ ∈ U et un chemin cζ ⊂ U joignant ζ0 à ζ. Montrer que la quantité

H(ζ) = exp
(

1
k

´
cζ

f ′

f

)
ne dépend pas du choix du chemin cζ .

(b) En déduire que f admet une racine k-ième holomorphe h : U → C.

5. (a) Montrer qu’il existe une fonction holomorphe h : D(0, 1) → C telle qu’on ait l’égalité 1
ez−1 = h(z)

z
pour tout 0 < |z| < 1. Que vaut h(0)?

(b) La fonction f : z ∈ D∗(0, 1) → ez − 1 ∈ C admet-elle un logarithme sur le disque unité pointé
D∗(0, 1) = D(0, 1)\{0}?

6. Soit k ≥ 2. A quelle condition sur l’entier relatif p ∈ Z la fonction z ∈ C∗ → zp ∈ C admet-elle une racine
k-ème holomorphe?

3.2 Séries de Laurent

Exercice 9
Soit la fraction rationnelle f : z → 1/((z − 1)(z − 2)).
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1. Déterminer les développements en série de Laurent de la fonction z → 1/(1− z) sur le disque unité D(0, 1)
ainsi que sur l’anneau A(1,∞).

2. Déterminer les développements en série de Laurent de f sur le disque D(0, 1) ainsi que sur chacun des
anneaux D(1, 2) et D(2,∞).

Exercice 10
Soit la fraction rationnelle f : z → 1/(z(z − 1)).

1. Déterminer le développement en série de Laurent de la fonction f sur chacun des anneaux A(0, 1) et
A(1,∞).

2. Déterminer les résidus res (f, 0) et res (f, 1).
3. (a) Donner le développement de Laurent de f sur l’anneau A1(0, 1) = {0 < |z − 1| < 1}. On pourra

poser w = z − 1.
(b) Retrouver la valeur de res(f, 1).

Exercice 11 1. Démontrer que l’expression z → e1/(2z) + ez définit une fonction holomorphe f : C∗ → C.
2. Déterminer la nature de la singularité en l’origine.
3. Ecrire le développement de Laurent de f sur C∗, et déterminer son résidu en l’origine.
4. Pour quelles valeurs de c ∈ C la fonction z ∈ C∗ → f(z)− c/z admet-elle une primitive sur C∗ ?

3.3 Fonctions méromorphes

Exercice 12 - Singularités isolées
Pour chacune des expressions suivantes, déterminer l’ouvert maximal sur lequel elle définit une fonction holo-
morphe. Discuter la nature de chaque singularité. Lorsqu’il s’agit d’un pôle, indiquer son ordre.

1. z → z4

(z4+16)2
,

2. z → z2−π2

sin z ,
3. z → 1−cos z

sin z ,
4. z → 1

ez−1 − 1
z−2iπ ,

5. z → cos(1/z),
6. z → 1/ cos z,
7. z → 1

cos(1/z) .

Exercice 13 1. Soient f : U → C une fonction holomorphe, a ∈ U un point de U , et k ∈ N∗.

(a) Montrer que l’expression z → f(z)
(z−a)k

définit une fonction méromorphe g sur U .

(b) Exprimer le résidu Res(g, a) en fonction des dérivées de f au point a.

2. Montrer que chacune des expressions suivantes définit une fonction méromorphe sur C dont on déterminera
les pôles. On précisera l’ordre et le résidu pour chaque pôle :

(a) z 7→ z
z2+1

(b) z 7→ z2+z+2
(z−2)(z−1)2

(c) z 7→ z+1
z3(z2+1)

(d) z 7→ 1/ sin z
(e) z 7→ sinh z

z4

(f) z 7→ ez sinh z
z4 .



Chapitre 4

Théorème des résidus et applications

4.1 Méthodes de calcul d’intégrales et résidus

Exercice 1 - Calculs pratiques de résidus
Démontrer les formules de cours suivantes :

1. Si va(f) ≥ −1, alors
Res(f ; a) = lim

z→a
(z − a)f(z)

2. Si a est un pole d’odre k de f alors

Res(f ; a) = 1

(k − 1)!
f̃ (k−1)(a), f̃(z) := (z − a)kf(z)

3. Si va(f) ≥ 0 et va(g) = 1 alors

Res
(
f

g
; a

)
=
f(a)

g′(a)
.

4. La fonction f ′/f est méromorphe. Ses pôles sont simples (ce sont les zéros et les pôles de f ) et on a

Res
(
f ′

f
; a

)
= va(f).

Exercice 2
Calculer, quand c’est possible, les résidus suivants :

1. Res(f ; (1 + i)), où f est entière.

2. Res (g, z), où g : w 7→ f(w)
w−z .

3. Les résidus aux pôles de

f(z) :=
z2 + z + 1

z (z2 + 1)
2

4. Res
(
e1/z; 0

)
.

Exercice 3
Soit R > 0 avec R différent de 1/2 et de 2 . On note γR le cercle de centre 0 et de rayon R parcouru dans le sens
direct. Calculer, selon les valeurs de R l’intégrale

ˆ
γR

dz

2z2 − 5z + 2
.

Exercice 4
Soit, pour a ∈ C et r > 0 le lacet c(a, r) : t ∈ [0, 2π] → a+ reit ∈ C.

1. Dessiner les lacets sur lesquels intégrer, puis calculer les intégrales :

ˆ
c(0,1)

cos z
z

dz,

ˆ
c(2+i,2)

ez
2

z − 2
dz,

ˆ
c(3+i,1)

ez
2

z − 2
dz,

ˆ
R

cos z
z (z2 + 8)

dz

où R désigne le bord orienté du rectangle de sommets [1 + i,−1 + i,−1− i, 1− i].
2. Même question pour :

ˆ
c(0,1)

ez

z3
dz,

ˆ
c(1,5/2)

1

(z − 4)(z + 1)4
dz,

ˆ
c(i,3/2)

1

(z2 + 4)
2 dz,

ˆ
c(0,3)

z

z2 + 4
dz.

18
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3. Soient γ1 : t ∈ [0, π] → 2eit ∈ C, γ2 : t ∈ [π, 2π] → 2eit ∈ C et σ : t ∈ [−2, 2] → t ∈ C. Dessiner ces
trois chemins, puis estimer les intégrales

´
γ1∗σ

z
z2+1dz et

´
γ2∗σ∨

z
z2+1dz. En déduire

ˆ
c(0,2)

z

z2 + 1
dz

Exercice 5
Soient P,Q ∈ C[Z] deux polynômes tels que degQ ≥ degP + 2.

1. Soient a1, · · · , aq les zéros de Q. Exprimer, en fonction des résidus de la fraction rationnelle P/Q en ces
points la valeur de

´
cr
(P/Q)(z)dz pour tout rayon r > sup |aj |.

2. Montrer alors que
∑q

j=1 res (P/Q, aj) = 0.

Exercice 6
On veut calculer l’intégrale I =

´∞
−∞

1
1+t6 dt.

1. Soit la fraction rationnelle f : z → 1
1+z6 . Déterminer ses pôles, leur ordre, ainsi que les résidus correspon-

dants. (On remarquera que α5 = −1/α lorsque α est un pôle de f ).
2. Soit, pour r > 1, le lacet γr : t ∈ [0, π] → reit. Montrer que

´
γr
f(z)dz → 0 lorsque r → ∞. En déduire

la valeur de I .

Exercice 7 - Fractions trigonométriques
Soit R = P/Q ∈ R(X,Y ) une fraction rationnelle telle que Q(x, y) 6= 0 si x2 + y2 = 1. On considère alors

ˆ 2π

0

R(cos θ, sin θ)dθ

1. Montrer que ˆ 2π

0

R(cos θ, sin θ)dθ =
ˆ
∂D(0,1)

R

(
z + z−1

2
,
z − z−1

2i

)
dz

iz

2. Soit a > 1, calculer ˆ 2π

0

cos θdθ
a+ cos θ

Exercice 8
Calculer l’intégrale ˆ

γ

log(z) sin
(

1

z − 1

)
dz

où log désigne la détermination principale du logarithme, et où γ : [0, 2π] → C est le lacet défini par γ(t) =
1 + 1

2e
it. Donner le résultat sous la forme d’une série convergente.

Exercice 9 - Lemmes du petit et du grand cercles
1. (Lemme du petit cercle) Soient α, β ∈ [0, 2π] tels que α ≤ β, et pour tout r > 0, soit γr : [α, β] → C le

chemin défini par γ(t) = a + reit. Soit R > 0 et soit f : D(a;R)\{a} → C une fonction méromorphe en
a, et telle que va(f) ≥ −1. Montrer que

lim
r→0

ˆ
γr

f(z)dz = (β − α)iRes(f ; a)

2. (Lemme du grand cercle) Soit R0 > 0 et Ω ⊂ C un ouvert tel que γR([α, β]) ⊂ Ω pour tout R > R0. Soit
f : Ω → C une fonction holomorphe. On pose

M(R) := sup {|f(z)| : z ∈ γR([α, β])}

et on suppose que M(R) = o
(
1
R

)
lorsque R→ ∞. Montrer qu’alors,

lim
R→∞

ˆ
γR

f(z)dz = 0
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3. Soit α ∈]− 1, 1[. Calculer l’intégrale

I =

ˆ +∞

0

tα ln(t)
t2 − 1

dt

Indice : intégrer une fonction holomorphe bien choisie sur le contour représenté sur la figure ci-dessous.

Exercice 10 - Intégrale de Dirichlet - V1
On veut calculer l’intégrale semi-convergente J = limr→∞

´ r
−r

sin t
t dt.

Pour 0 < ε < r, on introduit le lacet γ = c1 ∗ c2 ∗ c3 ∗ c4 concaténé des chemins c1 d’image [ε, r], c2 d’image
le demi-cercle de rayon r dans le demi-plan supérieur, c3 d’image [−r,−ε] et c4 d’image le demi-cercle de rayon
ε dans le demi-plan supérieur, parcouru dans le sens inverse du sens trigonométrique.

1. Démontrer que l’expression f : z → eiz/z définit une fonction méromorphe dont on déterminera les pôles.
Dessiner le lacet γ.

2. Evaluer limε→0+

´
c4
f(z)dz.

3. Montrer que limr→+∞
´
c2
f(z)dz = 0.

4. Déterminer la valeur de J .

Exercice 11 - Intégrale de Dirichlet - V2
On rappelle que l’intégrale de Dirichlet est définie par

I =

ˆ +∞

0

sinx
x

dx

1. Montrer que cette intégrale est semi-convergente mais que la fonction sin x
x n’est pas intégrable sur R+.

2. Calculer l’intégrale à l’aide du théorème des résidus (on pourra considérer la fonction g : z 7→ eiz

z et deux
demi cercles de rayon R et r, l’un dans le demi-plan supérieur, l’autre dans le demi-plan inférieur).

Exercice 12 - Indice
Soient r : [0, 1] →]0,∞ [ et θ : [0, 1] → R deux applications de classe C1. On introduit le chemin γ : [0, 1] → C∗

défini par γ(t) = r(t)eiθ(t).

1. Calculer l’intégrale
´
γ

dz
z .

2. Interpréter ce résultat lorsque γ est un lacet.
3. En déduire

´
c
dz
z , où c désigne le cercle {|z − 1| = 3} parcouru dans le sens trigonométrique.

4. Raisonner géométriquement pour intuiter la valeur de
´
c2

dz
z−i , où c2 désigne le cercle {|z| = 2} parcouru

dans le sens trigonométrique.
5. Déterminer alors

´
c2

dz
z2+1 .
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Exercice 13 - Transformée de Laplace
Soit f une fonction intégrable sur [0,+∞[. Pour tout complexe z tel que Re(z) > 0, on pose

Lf(z) :=
ˆ +∞

0

e−ztf(t)dt

1. Montrer que Lf est bien définie et holomorphe sur Ω0 = {z ∈ C : Re(z) > 0}.
2. Soit

Λ(f) :=

{
s ∈ R :

ˆ +∞

0

e−st|f(t)|dt < +∞
}

σ = σ(f) := infΛ(f), et soit Ωσ := {z ∈ C : Re(z) > σ}. Montrer que Lf admet un unique prolongement
holomorphe sur Ωσ , et déterminer ses dérivées à tout ordre.

Exercice 14
Soit n ∈ N un entier et α ∈ R un réels tels que n ≥ 2 et −1 < α < n− 1. Calculer l’intégrale

I =

ˆ +∞

0

tα

1 + tn
dt

Indice : intégrer une fonction holomorphe bien choisie sur le contour représenté sur la figure ci-dessous. L’angle
d’ouverture est 2π/n.

4.2 Résultats théoriques

Exercice 15 - Théorème de Hurwitz
Soit U un ouvert connexe et (fn) une suite de fonctions holomorphes sur U , qui converge vers f uniformément
sur tout compact de U . On suppose que f admet un zéro de multiplicité m en z0.
Montrer qu’il existe r0 > 0 tel que pour tout 0 < r < r0, il existe N(r) tel que pour tout n > N(r), fn a
exactement m zéros dans D (z0, r) comptés avec multiplicité.

Exercice 16 - Théorème de Rouché 1. Soit U un ouvert contenant le disque D̄(0, r), et f et g deux fonctions
holomorphes sur U , telles que |f − g| < |g| sur le cercle C(0, r). Montrer que f et g ont le même nombre
de zéros dans D(0, r).

2. Montrer que toutes les racines du polynôme P (z) = z5 + 3z3 + 7 appartiennent au disque D(0, 2).
3. Déduire le théorème de d’Alembert du théorème de Rouché.
4. Montrer que la fonction f : z → z20 + 14z3 + z − 2 possède 17 zéros dans la couronne {1 < |z| < 2}.
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Exercice 17 - Théorème d’approximation de Muntz
Le but de l’exercice est de montrer le résultat de densité dans les fonctions continues sur [0, 1] suivant :
Théorème. Soit (λj)j∈N∗ une suite d’entiers positifs distincts, tendant vers +∞. Alors, le sous espace vectoriel
engendré par la famille

{
1, tλj

}
j∈N∗ est dense dans C([0, 1]) si et seulement si

+∞∑
j=1

1

λj
= +∞

On pourra utiliser la conséquence du théorème de Hahn Banach suivante :
Théorème. Un point z d’un evn X appartient au sev engendré par Y = {yj} famille de X ssi pour toute forme
linéaire bornée l qui s’annule sur la famille, l s’annule aussi en z, i.e.

∀yj l (yj) = 0 ⇒ l(z) = 0

1. (a) Supposons d’abord
∑+∞

j=1
1
λj

= +∞. Montrer que si l est une forme linéaire continue bornée sur
C([0, 1]) alors f(z) = l (tz) est une fonction holomorphe bornée sur {<(z) > 0}.

(b) On définit BN (z) =
∏+∞

j=1
z−λj

z+λj
et gN (z) = f(z)

BN (z) . Montrer que g est bien définie, holomorphe et
bornée sur {<(z) > 0}.

(c) Conclure sur la première implication.
2. (a) Réciproquement, si

∑+∞
j=1

1
λj
< +∞, on pose f(z) = z

(2+z)3

∏
i

λi−z
2+λi+z .

Montrer que f est définie et holomorphe sur {<(z) > 0} ≥ −2, puis établir, pour {<(z) > −1},

f(z) = − 1

2π

ˆ +∞

−∞

f(−1 + is)

−1 + is− z
ds

(b) En remarquant que 1
w =

´ 1
0
tw−1dt si {<(w) > 0}, trouver une forme linéaire continue bornée sur

C([0, 1]) non identiquement nulle telle que l
(
tλj
)
= 0 et conclure.
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Théorème de l’application conforme de Rie-
mann

5.1 Automorphismes

Exercice 1 - Biholomorphie
Soit Ω1 et Ω2 deux ouverts de C. On dit que Ω1 et Ω2 sont biholomorphes si il existe une bijection holomorphe
entre Ω1 et Ω2 dont la réciproque est aussi holomorphe.

1. Montrer que C etD(0, 1) sont homéomorphes (on pourra considérer les applications z 7→ z
1+|z| et z 7→ z

1−|z| ).

2. C et D(0, 1) sont-ils biholomorphes?

Exercice 2 - Automorphismes du disque
On appelle automorphismes de D (noté Aut(D) ) les applications biholomorphes de D dans D. Si a appartient à
D, on définit φa : D 7→ C par

φa(z) =
z − a

1 + āz

1. Montrer que φa est un automorphisme de D d’inverse φ−a.
2. Montrer que les automorphismes de D s’écrivent λφa avec a ∈ D et |λ| = 1.

Exercice 3 - Automorphismes du disque épointé
1. Soient a ∈ D(0, 1), l’ouvert Va = D(0, 1)\{a} et f : Va → Va un automorphisme.

(a) Montrer que f admet une singularité effaçable au point a.
(b) Quels sont les points b ∈ C pour lesquels Va ∪ {b} ⊂ C est ouvert ?
(c) Montrer alors que le prolongement holomorphe f̃ : D(0, 1) → C de f vérifie f̃(a) = a.
(d) Montrer que les automorphismes de Va sont les restrictions à Va des automorphismes h de D(0, 1) tels

que h(a) = a.

2. En déduire que les automorphismes de D∗(0, 1) sont toutes les applications z → λz où λ est un complexe
tel que |λ| = 1.

Exercice 4 - Automorphismes de C∗

Soit f : C∗ → C∗ un automorphisme.

1. On suppose dans cette question que l’origine est une singularité effaçable de f . Décrire f .
2. On suppose désormais que 0 n’est pas une singularité effaçable de f .

(a) Montrer que 0 est un pôle d’ordre 1 de f .
(b) Montrer que g : z ∈ C∗ → 1/f(z) ∈ C∗ est un automorphisme de C∗.

3. Montrer que les automorphismes de C∗ sont toutes les applications z → λz et z → λ/z, où λ ∈ C∗.

5.2 Fonctions holomorphes sur le disque

Exercice 5 - Fonction holomorphe du disque dans lui-même
Soit f : D → D une application holomorphe, où D est le disque unité D = D(0, 1).

1. Soit m ∈ N∗. On suppose que f s’annule à l’ordre m à l’origine.

(a) Montrer qu’il existe une fonction holomorphe g : D → D telle que f(z) = zmg(z) pour tout z ∈ D.

23
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(b) En déduire que |f(z)| ≤ |z|m pour tout z ∈ D, puis que |fm(0)| ≤ m !
(c) Décrire f lorsqu’il existe un point z0 ∈ D∗ tel que |f (z0)| = |z0|m, ou bien lorsque |fm(0)| =m !

2. On suppose ici que f possède m zéros a1, · · · , am dans D, de multiplicités k1, · · · , km.

(a) On rappelle que, pour a ∈ D, ha : D → D désigne l’involution du disque telle que ha(a) = 0. Montrer
que |ha(z)| → 1 lorsque |z| → 1.

(b) Montrer que la fonction g : z → f(z)
∏m

j=1

(
haj

(z)
)−kj se prolonge en une application holomorphe

g : D → C.
(c) Majorer |g| sur un cercle C(0, r) ⊂ D, puis montrer que g prend ses valeurs dans le disque fermé.

(d) Montrer alors l’inégalité |f(0)| ≤
∏m

j=1 |aj |
kj .

3. Bonus : Le lemme de Schwarz-Pick. Montrer, pour tout a, z ∈ D avec a 6= z, les majorations∣∣∣∣∣ f(a)− f(z)

1− f(a)f(z)

∣∣∣∣∣ ≤
∣∣∣∣ a− z

1− āz

∣∣∣∣ et |f ′(a)| ≤ 1− |f(a)|2

1− |a|2

On pourra introduire le point b = f(a) ∈ D, et se ramener au cas où a = b = 0 en utilisant deux automor-
phismes du disque hα, hβ ∈ Aut D.

Exercice 6 - Applications propres sur le disque
Soit D = D(0, 1). On dit qu’une fonction holomorphe f : D → D est propre lorsque l’image réciproque f−1(K) ⊂
D de tout compact K ⊂ D est un compact de D. On veut décrire ces applications.

1. Montrer que f : D → D est propre si et seulement si |f(z)| → 1 lorsque |z| → 1.
2. Montrer qu’un automorphisme du disque ha,λ ∈ Aut D est propre. Montrer également qu’un produit fini
z ∈ D →

∏p
i=1 hai,λi

(z) ∈ D est également propre.
3. On se donne désormais f : D → D propre.

(a) Montrer que f a un nombre fini de zéros dans D.
(b) En déduire qu’il existe un nombre fini d’automorphismes du disques tels que la fonction h : z ∈ D →

f(z)/
(∏p

j=1 haj ,λj
(z)
)
∈ D soit propre, et ne s’annule pas sur le disque.

(c) Montrer alors que h est constante. On pourra penser au principe du maximum.

5.3 Suites de fonctions

Exercice 7 - Théorème de Montel
Enoncer et rappeler la démonstration du théorème de Montel.

Exercice 8 - Montel et zéros
Soit D le disque unité ouvert. On note, pour a ∈ D

φa(z) =
a− z

1− āz

1. Montrer que φa(∂D) est inclus dans ∂D
2. On note H∞ = {f ∈ O(D), ‖f‖∞ = supz∈D |f(z)| <∞}. Soit f ∈ H∞,M = ‖f‖∞, telle que
f(0) 6= 0. On note (zj) la suite des zéros de f , comptés avec multiplicité. Montrer qu’on peut écrire

f =
(∏n

j=1 φzj

)
gn avec ‖gn‖∞ ≤M . En déduire que

∏n
j=1 |zj | ≥ |f(0)|/M

3. Soit f ∈ H∞, non identiquement nulle. Montrer que

∞∑
j=1

(1− |zj |) <∞

4. Soit (fn) une suite de O(D) telle que ∀z ∈ D, |fn(z)| ≤ 1. On se donne une suite de points (zj) telle que∑∞
j=1 (1− |zj |) = ∞. On suppose que pour tout j, fn (zj) → 0. Montrer que fn tend vers 0 uniformément

sur tout compact.
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Exercice 9 - Cartan
Soit Ω un ouvert connexe borné de C, a ∈ Ω, f holomorphe sur Ω, à valeur dans Ω, telle que f(a) = a. On note
fn la composée f ◦ f ◦ ... ◦ f n fois.

1. Montrer que |f ′(a)| ≤ 1

2. On suppose que |f ′(a)| < 1. Montrer que fn converge uniformément sur tout compact vers la fonction
constante égale à a.

3. Le résultat est t-il toujours vrai si Ω n’est plus borné ?

Exercice 10 - Osgood
U un ouvert de C, (fn) suite de fonction holomorphe de U qui converge simplement vers une fonction f . On note
Ω la réunion de tous les ouverts de U sur lesquels f est holomorphe.

1. Montrer que Ω est ouvert
2. Soit D un disque fermé inclus dans U . Montrer à l’aide du lemme de Baire qu’il existe un disque ouvert D̃

dans D tel que fn soit unformément borné dans O(D̃)

3. Conclure

Exercice 11 - Théorème de dAlembert-Gauss
Soit P : z ∈ C →

∑n
k=0 akz

k ∈ C une fonction polynomiale non constante ( an 6= 0 et n ≥ 1 ).

1. Montrer que |P (z)| → ∞ lorsque |z| → ∞.
2. En déduire que, lorsque K ⊂ C est compact, son image réciproque P−1(K) ⊂ C est également compacte.

On dit que P est une application propre.
3. Montrer alors que l’image P (C) ⊂ C est fermée.
4. En déduire que P admet au moins une racine complexe.



Chapitre 6

Transformée de Fourier et fonctions holo-
morphes

Exercice 1 - Critère de Shannon 1. Soit f ∈ S(R) (espace de Schwarz) telle que f̂ est à support dans [−F, F ], F ∈
R∗
+. Montrer que si 2F < 1 alors pour tout x ∈ R, on a

f(x) =

+∞∑
k=−∞

f(k) sinc(π(x− k))

2. Rappeler le critère de Shannon et justifier le nom de l’exercice.

Exercice 2 - Densité des polynômes orthogonaux
Soit I un intervalle de R. On appelle fonction poids une fonction ρ : I → R mesurable, strictement positive et telle
que

∀n ∈ N,
ˆ
I

|x|nρ(x)dx < +∞

On note L2(I, ρ) l’esapce des fonctions de carré intégrable pour la mesure de densité ρ (par rapport à Le-
besgue), c’est à dire muni du produit scalaire

〈f, g〉ρ =

ˆ
I

f(x)g(x)ρ(x)dx

L2(I, ρ) est un espace de Hilbert.

Soit ρ une fonction poids. On suppose de plus qu’il existe α > 0 tel que :
ˆ
I

eα|x|ρ(x)dx < +∞

On cherche à montrer que (Vect {x 7→ xn, n ∈ N})⊥ = {0}

1. Soit f ∈ L2(I, ρ). On définit ϕ par

ϕ(x) =

{
f(x)ρ(x), x ∈ I
0 sinon

Montrer que ϕ ∈ L1(R).
2. On pose pour ω ∈ R,

ϕ̂(ω) =

ˆ
I

f(x)e−iωxρ(x)dx

Montrer que ϕ̂ se prolonge en une fonction F holomorphe sur

Bα =
{
z ∈ C, |=(z)| < α

2

}
.

3. Calculer F (n)(0). En déduire que si f ∈ V ect (xn)
⊥ alors f = 0 (On pourra utiliser le fait que la transfor-

mée de Fourier est injective).
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Exercice 3 - Application de Paley-Wiener
Soit φ ∈ C∞

0 (R) une fonction lisse à support compact non nulle. Montrer que sa transformée de Fourier φ̂ n’est
pas à support compact.

Exercice 4 - Paley-Wiener pour C(T)
Pour δ > 0, on note Bδ = {z ∈ C, | Im(z)| < δ}. Soit f ∈ C(T).
On va voir que f admet un prolongement analytique à une bande Bδ si et seulement s’il existe ε > 0 tel que
cn(f) = O

(
e−ε|n|).

1. Supposons qu’il existe ε > 0 et M > 0 tels que

∀n ∈ Z, |cn(f)| ≤Me−ε|n|

(a) Montrer que pour tout x ∈ R, f(x) =
∑

n∈Z cn(f)e
inx.

(b) Montrer que F (z) =
∑

n∈Z cn(f)e
inz converge uniformément sur tout compact de Bε.

(c) En déduire que f admet un prolongement analytique à Bε.

2. Supposons que f admet un prolongement analytique à Bδ . Notons

M = sup
{
|F (u+ iv)|; |u| ≤ π +

δ

2
, |v| ≤ δ

2

}
(a) Avec la formule de Cauchy, montrer que pour p ∈ N, supx∈T

∣∣f (p)(x)∣∣ ≤Mp!
(
2
δ

)p
.

(b) En déduire que pour tout n 6= 0,

|cn(f)| ≤
Mp!

np

(
2

δ

)p

≤M exp
(
p log

(
2p

δ|n|

))
(c) En choisissant judicieusement p, en déduire que |cn(f)| = O

(
e−ε|n|) pour ε = δ

2e .

Exercice 5 - Espaces de Hardy du disque unité
Soit D le disque unité et p un réel strictement positif. On définit l’espace de Hardy Hp(D) comme l’espace des
fonctions holomorphes f ∈ H(D) vérifiant

sup
0<r<1

ˆ 2π

0

∣∣f (reit)∣∣p dt < +∞

On pose ‖f‖ :=
(

sup0<r<1

´ 2π
0

∣∣f (reit)∣∣p dt < +∞
)1/p

. Montrer que H(D) est un espace de Banach pour
cette norme.

Exercice 6
On se place désormais sur l’espace de Hardy H2(D).

1. Définir a priori un produit scalaire sur cet ensemble.
2. Rappeler pourquoi on peut écrire que pour tout z ∈ Df(z) =

∑
n anz

n.

3. On pose M(r) =
(

1
2π

´ 2π
0

∣∣f (reit)∣∣2 dt)1/2. Exprimer M(r) en fonction des an. En déduire que M(r) est
croissante.

4. En déduire que ‖f‖ = lim
r→1

M(r) =
(∑

n |an|
2
)1/2

.

5. Montrer que H2(D) est en bijection avec l2 (N et en déduire que H2(D) définit bien un espace de Hilbert.
6. Montrer que pour tout f ∈ H2(D), on a

|f(z)| ≤ ‖f‖√
1− |z|2

7. Montrer que pour tout z ∈ D, l’application de H2(D) dans C qui envoie f sur f(z) est continue.
8. En déduire que pour tout z ∈ D, il existe Kz ∈ H2(D) telle que ∀f ∈ H2(D), f(z) = 〈f |Kz〉. Donner une

expression de Kz .
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Exercice 7
Soient f ∈ L2(R), a > 0, et Ba = {z ∈ C, | Im(z)| < a}. On va voir que les deux conditions suivantes sont
équivalentes :
(a) La fonction f se prolonge en une fonction F holomorphe sur Ba et telle que

sup
|y|<a

ˆ
R
|F (x+ iy)|2dx <∞

(b) La fonction ξ 7→ ea|ξ|f̂(ξ) est dans L2(R).

1. Supposons (b). Montrer que

F (z) =
1

2π

ˆ
R
f̂(ξ)eiξzdξ

est un prolongement holomorphe de f sur Ba qui convient.
2. Supposons (a). On se donne λ > 0 et on définit

kλ(x) =
1

2π

(
sin
(
λx
2

)
λx
2

)2

On définit pour x ∈ R et |y| < a, fy(x) = F (x+ iy) et gλ,y(x) = Gλ(x+ iy) où

Gλ(z) =

ˆ
R
F (z − u)kλ(u)du

(a) Montrer que ĝλ,y = k̂λf̂y .
(b) Montrer que pour tout ξ ∈ R, ĝλ,y(ξ) = ĝλ,0(ξ)e

−ξy .

(c) En déduire que pour |ξ| < λ, f̂y(ξ) = f̂(ξ)e−ξy .
(d) Conclure en utilisant la formule de Plancherel.



Chapitre 7

Fonctions Γ d’Euler et ζ de Riemann

7.1 Fonction Γ d’Euler

Exercice 1 - Fonction Γ - V1
On définit la fonction Γ par Γ(z) =

´ +∞
0

tz−1e−tdt.

1. Montrer que Γ définit une fonction holomorphe sur Ω0 un ensemble ouvert à préciser.
2. Montrer que ∀z ∈ Ω0 on a l’égalité Γ(z + 1) = zΓ(z).
3. En déduire que Γ se prolonge en une fonction holomorphe sur C/{−N}.
4. Donner la nature des singularités aux points −N de Γ (essentielle, pôle, illusoire). Dans le cas des pôles, on

donnera l’ordre leur ordre. La fonction Γ est-elle méromorphe sur C?

Exercice 2 - Fonction Γ - V2
Pour tout entier n ∈ N∗, on introduit l’ouvert Un = {Re z > −n}.

1. Soient z ∈ C et t > 0. Donner un sens à l’expression tz .
2. (a) Soit z ∈ U0. Montrer que l’intégrale

´∞
0
e−ttz−1dt est absolument convergente. Elle définit donc une

fonction Γ : z ∈ U0 →
´∞
0
e−ttz−1dt ∈ C.

(b) Soit k ∈ N∗. Montrer que l’expression γk : z ∈ U0 →
´ k
1/k

e−ttz−1dt ∈ C définit une fonction
holomorphe sur U0.

(c) Montrer que la suite de fonctions (γk) converge localement uniformément sur U0.
(d) Montrer alors que Γ est une fonction holomorphe sur U0.
(e) Exprimer, pour z ∈ U0, la dérivée Γ′(z) sous forme d’une intégrale.

3. Montrer que, pour tout z ∈ U0, on a l’égalité Γ(z + 1) = zΓ(z).
4. Montrer, pour tout n ∈ N∗, l’égalité Γ(n) = (n− 1) !
5. Montrer que, pour tous z ∈ U0 et n ∈ N∗, l’égalité Γ(z + n) = (z + n− 1) · · · (z + 1)zΓ(z).
6. Montrer alors que la fonction Γ admet un unique prolongement méromorphe à C tout entier. On prolongera

succesivement la fonction Γ à chaque ouvert Un pour n ∈ N∗.
7. Déterminer les pôles de la fonction Γ. Pour chacun d’entre eux, on précisera l’ordre et le résidu. Pour tout
n ∈ N∗, on trouve Res(Γ,−n) = (−1)n/n !
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Exercice 3 - Formule de Weierstrass
Soit z dans le demi-plan <(z) > 0.

1. Justifier que pour tout 0 ≤ t ≤ n on a (
1− t

n

)n

≤ e−t.

En déduire que

Γ(z) = lim
n→+∞

ˆ n

0

(
1− t

n

)n

tz−1dt

2. Montrer l’égalité suivante
ˆ n

0

(
1− t

n

)n

tz−1dt =
nzn!

z(z + 1) . . . (z + n)

3. En déduire que 1/Γ est une fonction entière et vérifie

1

Γ(z)
= lim

n→+∞

z(z + 1) . . . (z + n)

nzn!
= zeγz

+∞∏
n=1

(
1 +

z

n

)
e−z/n

avec γ la constante d’euler
γ := lim(1 + 1/2 + . . . .+ 1/n− logn).

Exercice 4 - Formule de Stirling complexe
On note B(t) = t − [t] − 1/2 la première fonction de Bernoulli. On cherche à montrer la formule, vraie pour
s ∈ C\(−∞, 0] :

logΓ(s) =
(
s− 1

2

)
log(s)− s+

1

2
log(2π)−

ˆ +∞

0

B(t)

s+ t
dt.

1. Soit f une fonction de variable réelle C1. Montrer la formule de sommation d’Euler

n∑
k=0

f(k) =

ˆ n

0

f(t)dt+
1

2
(f(n) + f(0)) +

ˆ n

0

B(t)f ′(t)dt

2. On rappelle qu’une primitive de log(x) est x log(x) − x. Appliquer la formule précédente aux fonctions
f(t) = log(z + t) puis f(t) = log(1 + t) et en déduire la formule

log
(
z(z + 1) . . . .(z + n)

n!

)
=(z + n) log(z + n)− z log(z)− n+

1

2
(log(z + n) + log(z))

− n log(n+ 1) + n− 1

2
log(n+ 1) +

ˆ n

0

B(t)

(
1

z + t
− 1

1 + t

)
dt

3. En admettant que C = 1 +
´ +∞
0

B(t)
1+t dt =

log(2π)
2 , montrer la formule de Stirling complexe.

4. En déduire la formule de Stirling asymptotique

Γ(s) = ss−1/2e−s
√
2π

(
1 +O

(
1

|s|

))

valable uniformément dans tout secteur S(δ, ε) =
{
s = reiθ, r > ε et −π + δ ≤ θ ≤ π − δ}.

5. En déduire l’estimation (uniforme dans toute bande a ≤ σ = Re(s) ≤ b, quand |τ̄ | tend vers l’infini

|Γ(σ + iτ)| ∼ c(σ) exp
(
−π
2
|τ |
)
|τ |σ− 1

2

Exercice 5 - Formule des compléments
On cherche à montrer la formule des compléments, ie

∀z ∈ C,<(z) ∈]0, 1[=⇒ Γ(z)Γ(1− z) =
π

sin(πz) .
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1. Soit α ∈]0, 1 [ . Montrer à l’aide du changement de variable (t, s) → (u, v) =
(
s+ t, st

)
que

Γ(α)Γ(1− α) = Iα =

ˆ +∞

0

1

vα(1 + v)
dv.

2. Calculer Iα à l’aide du contour suivant.

3. Conclure.

Exercice 6 - Formule de multiplication
1. Montrer que

lim
n→+∞

(n!)222n

(2n)!n1/2
= π1/2.

On rappelle la formule de Stirling n! ∼ (2π)1/2nn+1/2e−n.
2. On rappelle la formule (voir TD sur Γ)

∀z ∈ C,
1

Γ(z)
= zeγz

+∞∏
n=1

(
1 +

z

n

)
e−z/n

Montrer la formule de multiplication

Γ(z)Γ(z + 1/2) = π1/221−2zΓ(2z).

7.2 Fonction ζ de Riemann

Exercice 7 - Fonction ζ de Riemann
On introduit la fonction ζ :

ζ(z) =
∑
n≥1

1

nz

1. Montrer que ζ est holomorphe dans l’ouvert Ω = {z ∈ C | <z > 1}.
2. Soient p1 = 2, p2 = 3, . . . , pn, . . . la suite des nombres premiers. Montrer que ∀z ∈ Ω, on a

ζ(z) =
∏
n≥1

1

1− p−z
n

On appelle ce produit le produit eulérien.
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3. Montrer que
ζ ′(z)

ζ(z)
= −

∑
n≥1

λ(n)n−z

où λ(n) = ln(p) si n est une puissance d’un nombre premier et λ(n) = 0 si n a au moins deux diviseurs
premiers distincts.

Exercice 8 - Calcul des ζ(2k)
Le but de cet exercice est de calculer ζ(2k) =

∑+∞
n=1

1
n2k pour tout k ∈ N∗.

1. Montrer que la fonction H(z) = 2πi
e2πiz−1 est méromorphe sur C et caractériser ses singularités et les résidus

associés.
2. Soit N ∈ N∗ et ΓN le contour carré orienté dans le sens direct, aux points

(
N + 1

2

)
(±1 ± i). Calculer

l’intégrale

In :=
1

2πi

ˆ
ΓN

H(z)z−2kdz

en fonction de ck := Res
(
H(z)z−2k; 0

)
. Justifier que limN→∞ IN = 0.

3. Les nombres de Bernouilli (Bn)n∈N∗ sont définis par la série génératrice exponentielle

x

ex − 1
=:

+∞∑
n=1

Bnx
n

n!

Ceci signifie que Bn = Fn(0), où Fn(x) := dn

dxn

(
x

ex−1

)
. Exprimer ck en fonction d’un nombre de Ber-

noulli, et en déduire une expression de ζ(2k).

Exercice 9 - Fonction θ de Jacobi
1. Formule sommatoire de Poisson : l’objectif de cette question est de montrer le résultat suivant Soit f : R → C

de classe C1 tel que
∑
f(x+n) et

∑
f ′(x+n) sont normalement convergentes quand x décrit [0, 1]. Alors

f ∈ L1(R) et on a

+∞∑
k=−∞

|f̂(k)| < +∞, ∀x ∈ R
+∞∑

n=−∞
f(x+ n) =

+∞∑
k=−∞

f̂(k)e2iπkx.

On pourra étudier la fonction g(x) =
∑+∞

n=−∞ f(x+ n) et calculer son k ième coefficient de Fourier, i.e.

ck =

ˆ 1

0

g(x)e−2iπkxdx.

2. Calculer la transformée de Fourier de la Gaussienne, ie pour α > 0

I(x) =

ˆ +∞

−∞
e−παt2e−2iπtxdt.

On pourra dériver I .
3. On définit la fonction θ de Jacobi par

θ(x) =
∑
n∈Z

xn
2

.

De même, on définit la fonction Θ :]0,+∞ [ 7→ R,Θ(x) = θ (e−πx) Montrer que Θ est bien définie et vérifie

Θ(x) =
1

x1/2
Θ

(
1

x

)
Exercice 10 - Relation fonctionnelle de ζ
Soit t > 0 et ψ(t) = (θ (e−πt)− 1) /2. On rappelle que l’on définit la fonction Γ par

Γ(s) =

ˆ +∞

0

ts−1e−tdt
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et la fonction ζ par

ζ(s) =

+∞∑
n=1

1

ns
.

1. Rappeler dans quel espace est définie la fonction ζ.
2. Montrer que pour σ = <(s) > 1, on a

ζ(s)Γ(s/2)π−s/2 =

ˆ +∞

0

ψ(t)ts/2−1dt

On pourra effectuer le changement de variable t = πn2x.
3. Montrer que ˆ +∞

0

ψ(t)ts/2−1dt =
1

s(s− 1)
+

ˆ +∞

1

(
t−(s+1)/2 + ts/2−1

)
ψ(t)dt

4. En déduire que la fonction ζ de Riemann se prolonge sur C\{1} en une fonction holomorphe. Que dire de
1?

5. On pose la fonction ξ(s) = π−s/2Γ(s/2)ζ(s). Montrer que ξ(s) = ξ(1− s).
6. Démontrer (à l’aide des exercices 4 et 5 ) l’équation fonctionnelle, pour C\{0; 1}

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s)

En déduire la valeur de ζ(−2k) pour k > 0 et ζ(−1).
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